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PREFACE 

Le but de ce Special Course est de presenter, de fafon aussi complete que possible, I'etat actuel des connaissances 
sur les phenomenes et sur les moyens de prevision de la transition du laminaire au turbulent. 

Une description generate des phenomenes et une analyse de I'influence des facteurs affectant la transition sont 
d'abord presentees dans le cas des ecoulements bidimensionnels de fluide incompressible. 

Une etude approfondie de la theorie d'instabiiite laminaire est developpee ensuite, portant successivement sur les 
ecoulements bidimensionnels incompressible et compressible et sur les couches limites tridimensionnelles. 

Une revue speciale des resultats pour la transition en tridimensionnel est egalement presentee aussi bien du point 
de vue de I'instabilite transversale que des problemes de contamination qui peuvent apparaitre sur le bord d'attaque des 
ailes en fleche. 

On considere egalement les mecanismes non lineaires et le probleme des instabilites secondaires. 

D'autres aspects importants des problemes de transition sont enfin examines, comme la transition dans les couches 
de cisaillement libre, la receptivite de la couche limite aux perturbations exterieures, le controle d'ecoulement laminaire, 
la simulation visqueuse en soufflerie. 

This Lecture Series is sponsored by the Fluid Dynamics Panel of AGARD and implemented by the von Karman 
Institute. 

R.MICHEL 
Lecture Series Director 

iii 
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DESCRIPTION AND PREDICTION OF TRANSITION 
IN TWO-DIMENSIONAL, INCOMPRESSIBLE FLOW 

by 
Daniel ARNAL 

Office National d'Etudes et de Recherches Aerospatlales (ONERA) 
Centre d'Etudes et de Recherches de TOULOUSE 

2 avenue Edouard Belln 
31055 TOULOUSE Cedex - FRANCE 

SUMMARY 

This paper deals with a survey of transition problems In two-dimensional, Incompressible flows 
The first chapter Is devoted to a general description of phenomena leading to turbulence under the influe 
of various factors : free-stream turbulence, sound, pressure gradient, oscillations of the external flow, 
roughness, suction, wall curvature. Then, linear and non linear stability theories are briefly discussed. 
This chapter ends with a review of results concerning the structure and growth of turbulent spots and the 
progressive disappearance of Intermittency phenomenon when positive pressure gradients are applied. The 
second chapter describes practical methods for calculating the transition onset as well as the transition 
region Itself. Methods based on linear stability theory, empirical criteria, intermittency methods and 
turbulence models are presented successively. Some applications of these techniques are also given. 
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direction normal to the wall 

spanwise direction 

instantaneous velocities in the x, y, z directions 

mean velocities in the x, y, z directions 

fluctuations in the x, y, z  directions 
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CHAPTER I 

GENERAL DESCRIPTION OF TRANSITION 

IN TWO-DIMENSIONAL, INCOMPRESSIBLE FLOW 

1 - INTRODUCTION 

Since the classical experiments performed by Osborne REYNOLDS (1883), the instability of laminar 
flows and the transition to turbulence have maintained a constant interest in fluid mechanics problems. 
This interest results from the fact that transition controls important hydrodynamic quantities such as 
drag or heat transferr The present paper is devoted to a general survey of transition phenomena, in two- 
dimensional, incompressible flows. 

An overall picture of the boundary layer development is given on figure 1. From the leading edge 
to a certain distance Xj, the flow remains laminar ; in the zero pressure gradient case, for instance, the 
shape factor is constant and equal to the BLASIUS value 2.591. At Xj, turbulent structures appear and 
transition occurs. From x,j, to Xj>, there is a noticeable change in the boundary layer properties : the pro- 
cess of transition involves a large increase in the momentum thickness 6 and a large decrease in the shape 
factor. As a result, the displacement thickness 61 = H6 exhibits a more complex evolution. The skin fric- 
tion coefficient increases from a laminar value to a turbulent one, the latter being in some cases an or- 
der of magnitude greater than the former. It is obvious that the location and the extent of the transition 
depend on a large range of parameters, such as external disturbances, vibrations, pressure gradient, rough- 
ness, suction or blowing, wall curvature ... 

In fact, two problems have to be studied : 

a) What are the mechanisms leading to turbulence ? As long as external perturbations are small, one can 
observe at first two-dimensional oscillations developing downstream of a certain critical point. After a 
linear amplification of these waves, three-dimensional and non linear effects become important, leading 
to secondary instability and then transition. These basic phenomena can be modified or even bypassed by 
factors more or less controlled. 

b) Once the first turbulent structures are created, what will be their subsequent behaviour up to the for- 
mation of the turbulent boundary layer ? 

Both problems will be examined successively. The influence of some of the aforementioned para- 
meters will also be discussed. 

2 - GENERAL DESCRIPTION OF THE MECHANISMS INDUCING TURBULENCE 

2.1.  Fundamental aspects with zero pressure gradient and low external disturbances level 

2.1.1. Linear amplification_of_small_disturbances 

The instability leading to transition starts with the growth of two-dimensional disturbances, the 
existence of which has been first demonstrated by the experiments of SCHUBAUER and SKRAMSTAD /I/. These, 
now classic, experiments were conducted at the National Bureau of Standards in a subsonic wind tunnel with 
a very low turbulence level (T -  0.03 10"^ in the working section). Figure 2 shows some records delivered 
by a hot wire set at  six streamwise positions, at a constant distance from the wall. The fluctuations are 
at first almost non existent ; but, when the wire is moved downstream, a regular oscillation appears, with 
increasing amplitude as the distance increases. 

In fact, the existence of small, regular oscillations travelling in the laminar boundary layer 
was postulated many decades ago by RAYLEIGH (1887) and PRANDTL (1921). Some years later, TOLLMIEN worked 
out a complete theory of boundary layer instability (1929) and SCHLICHTING calculated the total amplifica- 
tion of the most unstable frequencies (1933). For this reason, the instability waves are often referred as 
the "TOLLMIEN-SCHLICHTING waves". Nevertheless, the so-called "linear stability theory" received little 
acceptance, essentially because of a lack of experimental results. The aforementioned experiments of 
SCHUBAUER and SKRAMSTAD completely revised this opinion by demonstrating the existence of instability waves. 
Physically, the birth of these waves can be related to the concept of receptivity, introduced by MORKOVIN 
(1969). The receptivity describes the means by which forced disturbances (sound, external turbulence) enter 
the boundary layer and their signature in the disturbed flow. If they are small, they will tend to excite 
the normal modes of the boundary layer ; these normal modes are the TOLLMIEN-SCHLICHTING waves, which 
constitute free responses of the laminar boundary layer to the disturbance environment. 

A complete account of the stability theory is out of the scope of this paper. However, we need 
to introduce some theoretical elements for a comprehensive study of the experimental results. 

The stream function representing a single disturbance is assumed to be of the form : 

*(x, y, t) = ^iy)   e^^'^^ " "^^ (1) 

with u' = 1^  and  v' = - |i (2) dy ox 

It is often assumed that the mean flow is parallel : V = 0 and U depends only on y. The introduc- 
tion of relations (1) and (2) into the continuity and momentum equations allows to obtain the ORR-SOMMERFELD 
equation, after linearization and elimination of pressure : 



2-3 

1^" - 2a^H^" . a^f - IR [(an - <.) (^"  - a^l^) - aU-f] (3) 

The mathematical nature of the two principal parameters a and 0) leads to two theories : the spa- 
tial theory and the temporal theory. For the moment, we will restrict our purpose to the spatial theory : 
0) is a real quantity, which represents the circular frequency of the wave and a is complex : a = a + ia.. 
Relation (1) takes the form : '^    """ 

,1,/     ^v   iD ^ \  - "-i^  i(a_x - tut) ... V(x, y, t) = y(y) e   i   e   ^ (4) 

r is a complex amplitude function. The amplification factor a determines the degree of ampli- 
fication or damping and a denotes the wave number of the perturbation. If a., a and o) are made dimension- 
less with a reference velocity V and a reference length L, the Reynolds number appearing in (3) is equal 
to V L/v. 

Due to the homogeneous boundary conditions (u' and v' must vanish at the wall and in the free 
stream), the problem is an eigenvalue one. When the mean velocity U(y) is specified, a non zero solution 
of (3) is obtained for particular combinations of the four real parameters R, a., a and to. 

The ORR-SOMMERFELD equation was solved by many authors (see /2/ and /3/ for instance). Some results 
of such computations for the BLASIUS flow are represented on figure 3 where L = 61 and V = Ue, so that 
0) = 2irf(51/Ue (f is the physical frequency).  Figure 3a shows some curves of constant amplification rate a. ; 
curves of constant wave number a    are not represented for clarity. In this diagram, curves of constant   ""■ 
frequency F = 2Trfv/Ue^ = to/R appear as straight lines through the origin. Stability diagrams are very often 
plotted in (F, R61) coordinates, as it is the case on figure 3b, which deals only with the curve a.   = 0. 
The locus a^ = 0, called the neutral curve,separates the region of stable from that of unstable disturbances. 
In particular, there is a value of the Reynolds number below which all disturbances decay ; it is the "cri- 
tical Reynolds number", R61  , which is slightly greater than 500. Let us notice that computations including 
non parallel effects (/4/, 75/) give lower value (see figure 3b). 

Figure 3 indicates that a single frequency waves travelling in the laminar boundary layer is at 
first damped, then amplified, and again damped as it leaves the unstable region. An Important parameter is 
the total amplification rate, defined as : 

_A_ 
A 

exp /  - a. dx 
-'x     1 

■ o       -' 

(5) 

A is the wave amplitude and the index o refers to the streamwise position where the wave enters 
the unstable region. 

Two other quantities are of interest : 

- The physical wave-length A of a given wave is obviously related to a . At R61 = 2 000, the wave- 
lengths of the unstable frequencies lie between 66 and 18 6. The TOLLMIEN-SCHLIcfiTING waves are longer com- 
pared to the boundary layer thickness. 

- The phase velocity c is equal to m/a   . For unstable waves at moderate Reynolds numbers, calcula- 
tions indicate that : c = 0,2 to 0.4 Ue.       ^ 

Similar results may be obtained as regards to temporal theory. In this case, a is real and o) is 
complex. The stream function is now expressed as : 

,,,, ..^   if),  ,  tOjt  i(ax - to^t) 
i>(^,   y. t) = H^(y) e 1  e       ^  ^ 

It is clear that the neutral curves are identical in spatial and in temporal theories. As a gene- 
ral rule, CASTER'S relation makes possible to convert a temporal to a spatial amplification rate /6/. 

In the preceding lines, we considered only two-dimensional waves (i.e. waves, the crests of which 
travel normally to the main flow). A more general form of the stream function can describe the oblique, 
three-dimensional waves : 

*(x, y, z, t) = H>(y) e^^"'^^ ^z - 0)t) (6) 

These waves are often neglected in two-dimensional problems. In fact, it can be demonstrated that, 
in the temporal theory, instability appears first for a two-dimensional disturbance (SQUIRE's theorem). 

b) Some experimental results 

We already mentioned that SCHUBAUER and SKRAMSTAD were the first to observe that natural oscilla- 
tions existed in the laminar boundary layer. In order to make more quantitative comparisons with the theory, 
they worked then,with artificial  disturbances : a thin metal strip extending over a width of about 30 cm 
was placed near the wall and was excited by a magnetic field induced by an alternating current. The so-called 
"vibrating ribbon" technique made possible to produce two-dimensional disturbances of a prescribed frequency 
with a controlled initial amplitude. The wave-length, amplification rate, amplitude and phase velocity of 
the waves were measured with a hot wire anemometer, and the agreement with theoretical results was good. 

More recently, ROSS, BARNES, BURNS and ROSS /7/ repeated in some way SCHDBAUER-SKRAMSTAD experi- 
ments. Their wind tunnel had also a very low turbulence level (T = 0.03 10"^) and a vibrating ribbon was 
used to produce instability waves. Typical results are plotted on figures 4 and 5. In figure 4, the experi- 
mental distributions of u'/Ue obtained for a given frequency at two values of R61 are compared with 
JORDINSON's calculations /2/. An interesting feature of these profiles is the existence of a zero-amplitude 
point, corresponding to a sudden phase shift of 180°. The experimental and theoretical evolutions of the 
total amplification rate (see relation (5)) are compared in figure 5 for three frequencies : the overall 
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agreement Is reasonable. The points where the curves have a zero slope correspond to a = 0, that Is to 
say to the neutral curve. The experimental value of the critical Reynolds number was lower than that pre- 
dicted by the parallel flow assumption theory, but a better agreement was since achieved with the SARIC- 
NAYFEH calculations /5/ where the non parallel effects are taken into account (figure 3b). 

The vibrating ribbon generates waves of a single frequency. In practical situations however, 
a source of disturbances such as free-stream turbulence will create waves covering a more or less wide 
range of frequencies and orientations. For this reason, GASTER and GRANT /8/ used a completely different 
approach : an acoustic pulse was generated by a loudspeaker and transmitted to the boundary layer by a 
small hole in the flat plate. "This stimulation of the wave system generates a packet of waves, which 
spreads out as it travels downstream. The initial disturbance excites all possible modes and the wave pac- 
ket forms through selective amplification and interference of the most unstable waves". Figure 6 shows the 
growth of two-dimensional waves of various frequencies. Theoretical predictions performed by GASTER /9/ are 
also given. There is a major difference between figures 5 and 6 : in the present case, all curves are ob- 
tained in a single experiment ; on the contrary, each curve shovm on figure 5 needs a different experiment. 

KNAPP, ROACHE and MUELLER /lO/ have used the smoke visualization technique in order to describe 
the various stages leading to transition. The laminar boundary layer develops in natural conditions 
(T -  0.1 10~^) on an ogive nose cylinder aligned with the free-stream. The upper part of the figure 7 dis- 
plays the overall smoke pattern as observed with zero pressure gradient (the lower part presents typical 
records obtained in various experiments). It can be seen that the instability waves take the form of con- 
centrated bands of smoke around the cylinder (left part of the sketch). These "rings" become more distinct 
as they move down the body, indicating the existence of a strong amplification. 

2.1.2. Non linear amplification of disturbances 

When the initially weak disturbances reach a certain amplitude, their development begins to 
deviate from that predicted by the linearized theory : the quadratic terms neglected in this theory are 
then appreciable and three-dimensional effects appear. The smoke visualizations made by KNAPP et al. indi- 
cate that the initially two-dimensional waves are distorted (figure 7) into a series of "peaks" and "valleys". 
As the flow proceeds downstream, this pattern becomes more and more pronounced. 

a) Earlier experimental studies under controlled conditions 

The three-dimensional development of the disturbances was studied by KLEBANOFF, TinSTROM and 
SARGENT /ll/ under controlled conditions. A vibrating ribbon is once again used and thin spacers are placed 
beneath the ribbon in order to Induce a minute periodic variation in the boundary layer thickness in the 
spanwise direction. Other careful experiments have been carried out by KOVASZNAY, KOMODA and VASDDEVA /12/, 
who used a technique similar to that of KLEBANOFF et al. : in addition, an array of hot wires provides 
instantaneous pictures of the flow development. 

Figure 8, extracted from I i\l,   shows the spanwise distributions of the streamwise fluctuation 
intensity at three streamwise positions. The hot wire is placed at a constant height near the wall. Regions 
of maximum and minimum amplitude correspond respectively to the "peaks" and "valleys". At x - XQ = 7in., 
the amplitude measured at the peak position is about six times greater  than that measured at the valley 
position. This observation is Illustrated in figure 9, where the amplitudes at peak and valley are plotted 
as function of the distance from the ribbon. 

The distribution of the mean velocity across the boundary layer is also distorted, as it can be 
seen in figure 10. The considered stations are those indicated on figure 9. At stations C and D, the profiles 
measured at the peak have developed a point of inflexion, with a progressively greater defect in velocity. 
On the contrary, the valley position is characterized by a profile somewhat fuller than the BLASITIS one. 
Measurements of the mean cross-flow velocity W indicate the generation of a system of longitudinal vortices. 

In such controlled conditions, the flow remains strictly periodic. For a certain fraction in each 
cycle of the primary (TOLLMIEN-SCHLICHTING) wave, the instantaneous inflexional form at the peak is more 
pronounced that the mean one. As a consequence, there is a marked increase in spanwise vorticity. Figure 11 
shows the contours of constant 8U/3y (approximate vorticity component in the spanwise direction) measured 
by KOVASZNAY et al. at the peak position. The abscissa is t/T, where T represents the period in time of the 
primary wave. With the reservation that a period in time corresponds to a wave-length in space, the plotted 
curves define a spatial pattern moving towards the right. For the BLASIUS profile, the maximum vorticity is 
encountered at the wall and is equal to 0.571 when made dimensionless by 61 and Ue. Figure 11 indicates that 
this value is exceeded at y/6 - 0.4 or 0.5 during about a third of the cycle. TANI /13/ suggests that 
"the spanwise vorticity is convected away from the wall by the induced velocity due to the streamwise vor- 
tices. Upon reaching the outer part of the boundary layer ... the vortex tubes constituting the spanwise 
vorticity are stretched out, until high concentration of vorticity is formed in a thin layer called high- 
shear layer." 

Similar measurements performed off-peak indicate that the vorticity becomes less Intense as the 
valley position is approached. In a plan view, the high-shear layer looks like a blunt-nosed delta /12/. 

b) Ordered peak-valley structure in natural conditions 

Spanwise variations are also present in natural conditions. KLEBANOFF et al. /ll/ reported mea- 
surements of the streamwise fluctuation in a direction normal to the main flow : although less regularly 
spaced than in controlled conditions, a peak-valley system was found to occur. This system is ordered in 
the sense that peaks follow peaks and valleys follow valleys. The spanwise wave-length is generally somewhat 
smaller than the streamwise wave-length. It can be noticed that this structure (the so-called K-structure) 
appears when the maximum rms amplitude of the TOLLMIEN-SCHLICHTING waves approaches one per cent of the 
free-stream velocity. 
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The problem Is now to give an explanation of the preferred spanwlse periodicity. BENNEY and LIN 
IXkl  and BENNEY /15/, /16/ studied theoretically the non linear Interaction between a two-dimensional 
TOLLMIEN-SCHLICHTING wave and a three-dimensional wave with spanwlse periodicity. The calculations revealed 
that this Interaction promotes the growth of longitudinal vortices similar to those reported by KLEBANOFF 
et al., but were unable to estimate the preferred spanwlse periodicity. 

CRAIK l\ll   investigated the interactions of a resonant triad of TOLLMIEN-SCHLICHTING waves. The 
considered triad Involved a two-dimensional wave and two oblique waves propagating at equal and opposite 
angles to the flow direction, and such that all three waves have the same phase velocity in the downstream 
direction. The non linear interaction analysis leads to : 

1 dA _ 
A  dt 

B' 
^0 ^-iT^   

1 dB _ 
B  dt 

b     .b,   ^f .     0          IB 

A and B are respectively the amplitudes of the two-dimensional wave and of each oblique wave. 
B  is the conjugate amplitude, a and b are given by the linear stability theory ; an orthogonality condi- 
tion determines the interaction coefficients a. and b,. The calculations indicate that b. is very large. 
This means that there can be a powerful interaction, leading to a rapid transfer of energy from the primary 
shear flow to the disturbances, especially to the oblique waves. 

CRAIK's model is consistent with some experimental observations, but is inoperative In other cases. 
As pointed out by HERBERT /18/, the spanwlse wave-length seems to depend on unknown details of the experi- 
mental set-up. 

'^^   §^£ii£££5_P55!SlY5li£Z structure in natural and controlled conditions 

The peak-valley system described above does not constitute the only one which was encountered. 
KNAPP, ROACHE and MUELLER /lO/ observed that the smoke streakllnes formed a staggered peak-valley structure. 
In this case, peaks follow valleys and valleys follow peaks (figure 12). Let us observe that the smoke 
visualizations presented in figure 7 do not present this staggered arrangement, because they describe the 
development of a single wave. 

More recently, the staggered structure was studied under controlled conditions (see /19/ for ins- 
tance) : a vibrating ribbon generates two-dimensional TOLLMIEN-SCHLICHTING waves and three-dimensionality 
results from very weak background disturbances. In fact, two different types of staggered structures have 
been observed : one in which \^   is larger than \^   (C-type structure) and another in which X  is larger than 
\^   (H-type structure). As pointed out by SARIC and THOMAS /19/, the 
important parameter is the maximum value of the primary fluctuation. For amplitudes of the order of 0.3 %, 
the C-type system appears and is a result of the CRAIK's mechanism /17/. At amplitudes between 0.3 % and 
0.6 %, the staggered three-dimensional pattern can be explained by the model of HERBERT /18/ and is called 
the H-type pattern. Larger amplitudes lead to the appearance of the ordered structure studied by KLEBANOFF 
et al. (K-type structure). 

Obviously, a hot wire placed in a flow where staggered peak-valley systems are present will record 
subharmonlcs of the primary wave, because the pattern repeats itself with wave length 2X^. This mechanism 
constitutes "the subharmonlc route to turbulence" /19/. 

2.1.3. The_breakdown 

The non linear development of disturbances terminates with the "breakdown" phenomenon. The term 
breakdown" is used "to describe what appears to be an abrupt change in the character of the wave motion 

at a peak and the onset of what is believed to be a new instability /U/". This instability is often re- 
ferred as the secondary instability (HERBERT /18/ calls it the tertiary instability, reserving the secon- 
dary instability term to the non linear mechanisms discussed in § 2.1.2.). 

As the flow proceeds downstream, the high-shear layer becomes more and more Intense, and finally 
Induces the new instability. This Is due to the inflexional form of the Instantaneous profiles : the linear 
stability theory predicts that an inflexion point gives rise to Important destabilizing effects (see § 2.3.1.). 
On an u'- signal recorded at y/6 - 0.5 to 0.7, the secondary instability takes the form of a strong negative 
pulse, the amplitude of which can be 30 to 40 per cent of the free-stream velocity ; its duration is about 
1/lOth of the primary wave period (figure 7). This signal is called the "spike". In the later development, 
a second spike will also appear. The maximum root-mean-square value of the longitudinal fluctuation Increases 
abruptly, up to 10 or 15 per cent of Ue. 

Figure 13 shows a map of the iso-vortlclty contours as measured by KOVASZNAY et al. /12/ at the 
one spike and double spike stages. HAMA and NUTANT /20/ performed careful visualizations in a water channel 
by using the hydrogen bubble technique. Examples of results are given in figure 14. A vertical, electrically 
pulsed wire is placed at a peak position and releases periodically columns of bubbles into a laminar boundary 
layer. The bubbles lines are convected downstream and are deformed by large stimulated waves and by three- 
dimensional disturbances. The six photographs cover 40 per cent of the TOLLMIEN-SCHLICHTING period in time 
and 60 per cent of the wave length. They Indicate the development of the sharply kinked lines of bubbles and 
the final exaggeration of the kink into a spiral. 

On the theoretical side, GREENSPAN and BENNEY /21/ calculated the growth of secondary disturbances 
by a two-dimensional, Inviscld, linearized approach. The basic velocity profiles introduced as data in their 
theory were the Instantaneous prof lies measured by KOVASZNAY et al.. The main result is that over one half 
cycle of the primary wave, the amplitude of the most unstable secondary wave increases by a factor of about 
10, its frequency being about 8 times that of the primary wave. It is clear that this simple theory contains 
most of the observed features of breakdown. LANDAHL /22/ made a more ambitious approach on the basis of the 
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kinematic wave theory for conservative systems. Some of the assumptions he used were criticized by 

STEWARTSON /23/. 

The basic mechanism which was studied for disturbances artificially introduced in the boundary 
layer is applicable to the case of natural transition : the negative spikes are also observed and are s 
what more numerous at spanwlse positions corresponding to the peaks /U/. In their smoke visualizations, 
KNAPP et al. /lO/ observed that within a fraction of a wave-length, the peak-valley system gives rise to a 
vortex filament, often referred as a "horseshoe vortex" (figure 7). An Important difference, however, is 
that breakdown occurs Intermittently rather than contlnously as in controlled conditions. KNAPP et al. 
reported that in natural conditions, the smoke waves break down in sets rather than as individuals. 

For each cycle of the primary wave, the spikes Increase in number and form bunches of high- 
frequency fluctuations (see u' record in figure 7). This may be interpreted as the shedding of vortices 
from the nose as well as from the swept-back sides of the delta-shaped high-shear layer. Such vortices 
have been called "hairpin eddies" by KLEBANOFF et al. till.   They are highly unstable and break down into 
smaller vortices, which again break down into smaller vortices. The fluctuations finally take a random 
character and form a so-called "turbulent spot", the typical arrowhead shape of which is shown in figure 7. 
A detailed study of the turbulent spots will be given in Section 3. 

One has to keep in mind that the non linear phase and the breakdown process occur over a relati- 
vely short distance. For typical flat plate conditions, the streamwlse extent of linear amplification covers 
about 75 to 85 per cent of the distance to the beginning of transition. This explains that calculation me- 
thods based on linear theory only (en methods) give good results for predicting the transition location 

(see Chapter II). 

The fundamental mechanisms which have been described can be more or less modified by a great num- 
ber of factors such as free-stream turbulence, sound, pressure gradient, suction, wall curvature ... The 
influence of these factors will now be discussed. 

2.2.  Influence of sound and free-stream turbulence (zero pressure graalent) 

Sound and free-stream turbulence represent two types of external disturbances of very different 

nature : 

- The free-stream turbulence (vorticlty-turbulence mode) propagates essentially along streamlines 
with the local flow velocity. It is a vectorlal, three-dimensional quantity, the spectrum of which covers a 
more or less wide range of frequencies. 

- The sound is an Irrotatlonal mode of disturbance. In low-speed wind tunnels, it propagates at 
speeds an order of magnitude faster than the mean flow. It can be considered as monodimensional and the 
use of a loudspeaker allows to study the effects of a single frequency. 

In both cases, when such disturbances enter the laminar boundary layer, they initiate in it two 
responses : a forced response (solution of a non homogeneous problem, because the outer boundary conditions 
are non zero) and a free response (solution of an homogeneous equation such as the ORR-SOMMERFELD equation). 
This problem was called the "receptivity" problem by M.V. MORKOVIN. 

2.2.1. Influence of free-stream turbulence 

On a theoretical point of view, results concerning the influence of external turbulence are rather 
scarce. This is due to the three-dimensional and random character of the disturbances. CRIMINALE /24/ stu- 
died a non homogeneous form of the ORR-SOMMERFELP equation ; the right-hand side of (3) being replaced by 
a forcing function V(x, y, z, t). ROGLER /25/ represented the free-stream disturbances by arrays of rectan- 
gular vortices, oscillating sheets of vorticity and irrotatlonal fluctuations, and examined their interac- 
tion with a boundary layer formed by two straight-line segments. Despite these studies, the linking between 
imposed disturbances and instability waves is not fully understood. 

On an experimental point of view, the results are more numerous. They indicate trends and suggest 
empirical correlations which may be of interest for practical purposes. 

a) Effect of T on transitlon_location 

The effect of free-stream turbulence on transition location is shown on figures 15 and 16, where 
the transition Reynolds number Rx.j is plotted as a function of the external turbulence level T. In figure 15, 
T Is varying from 0 to 3 10"^ ; the high values of T, such as those used by HALL and HISLOP, are achieved 
by installing grids just upstream of the test section. Figure 16 shows an enlargement of the previous graph 
for the lower values of T, say T < 0.3 10"^. The considered experiments have been carried out in low turbu- 
lence wind tunnels, where T is increased by successively removing the damping screens. As T becomes very 
small  the data of SCHUBAUER-SKRAMSTAD HI  and those of WELLS /26/ exhibit the same trend, in the sense that 
RXT reaches a constant value. But this value is about 2.8 10^ for SCHUBAUER-SKRAMSTAD and^about 5 10  for 
WELLS. In fact, sound component controls transition when T is very low and the effect of "true" free-stream 
turbulence can be only observed at values of T greater than 0.1 10" . (The influence of sound will be exa- 

mined in § 2.2.2.). 

In a general manner, the experimental data seem to collapse onto a single curve. Analytical repre- 
sentations of this curve have been proposed ; they will be discussed in Chapter II. It can be observed that 
transition moves rapidly upstream when T increases. This effect appears to be very strong : the value^of 
Rx^ corresponding to T = 0.3 10"^ is about three times greater than that corresponding to T = 1.5 10  .On 
the other side, it is obvious that Rx^ depends not only on the root-mean-square value of the free--stream 
turbulence, but also on its spectrum. The effect of this latter parameter was studied by MACK /27/. 
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b) Some detailed experimental results 

The rapid decrease in Rx„ indicates that important changes in the laminar boundary layer structure 
must appear when T increases. 

Experiments have been carried out at ONERA/CERT /28/ in a wind tunnel where the natural turbulence 
was low, but not very low (T = 0.2 10"^). The experimental set-up is shown on figure 17, as well as a free- 
stream turbulence spectrum. The boundary layer develops on a cylinder aligned along the axis of an axi- 
symmetric wind tunnel. The angle of divergence of the slightly conical wall around the cylinder is such 
that the external velocity is practically constant and equal to 33 m/s. 

Profiles of the u'-fluctuation are presented on figure 18 for five stations within the laminar 
region. At these abscissa, the measured mean velocity profiles are confounded with the BLASIUS solution 
within the experimental uncertainty. The signal recorded at x = 0.66 m shows that the instantaneous velocity 
is the sum of an irregular, low frequency oscillation and of a more regular oscillation at a higher frequency. 
The spectra presented on figure 19 confirm this observation ; they were measured at various streamwlse posi- 
tions, at a constant value of the dimensionless distance from the wall y/6 = 0.2. The low frequency range 
(f < 200 Hz) represents the boundary layer response to the imposed external fluctuations, whereas the local 
peak centered around f = 500 - 600 Hz is related to TOLLMIEN-SCHLICHTING waves, that is to say to eigenmodes 
or natural oscillations. Amplitude profiles corresponding to various frequencies are plotted on figure 20 
for X = 0.66 m. As expected, the frequency f = 600 Hz exhibits the classical shape of the TOLLMIEN- 
SCHLICHTING waves prof lies with a zero-amplitude point located at y/6 = 0.5 ; on the stability diagram, this 
frequency Is placed near the upper branch of the neutral curve, in the region where the greatest amplifica- 
tion factors are encountered. 

Other experiments were performed with higher values of T /29/. For this, a grid was inserted at 
the entrance of the working section. As it can be seen on figure 21, the root-mean-square value of the 
streamwlse fluctuation in the free stream decreased from T = 0.9 10~^ (at the stagnation point) to T = 0.3 10~^ 
(at the end of the working section). A power spectrum, measured at x = 0.66 m, is also presented on this 
figure : the very fine meshes of the grid damp the low frequencies but turbulence is generated for frequen- 
cies up to 4 000 Hz and even higher. 

Figure 22 shows two samples of u'^profiles, with corresponding spectra measured in the boundary 
layer. At the first station, which is located near the stagnation point, the fluctuation level does not 
exhibit a large departure from its free-stream value and the spectrum extends over a relatively wide range 
of frequencies. At the second station (x = 0.66 m), the fluctuation amplitude increases, with a spectrum 
reduced to lower frequencies, which are stable according to linear stability theory ; the peak related to 
the TOLLMIEN-SCHLICHTING waves appears at f =: 500 - 600 Hz, but is not so clearly noticeable. 

Experiments were performed with another grid (grid 2), which created a higher free-stream turbu- 
lence intensity. In this case, transition moved upstream and occured without the appearance of TOLLMIEN- 
SCHLICHTING waves, neither on the instantaneous records, nor on the spectra. Such a phenomenon is called 
"bypass" ; this word means that, for large external disturbances, turbulent spots are triggered without 
resorting to the linear instability theory. 

Some other striking features have to be noted : 

. The laminar boundary layer can transport fluctuations of large intensity, as it is illustrated 
on figure 23, where the maximum value of u'^ is plotted for the three configurations (no grid, grid 1, 
grid 2). High intensities (5 or 6 per cent of the external velocity) are encountered in the laminar bound- 
ary layer. 

. As far as the transition location is concerned, the value of Rx.j measured with grid 1 is some- 
what larger than that observed in the no-grid case. This fact strongly disagrees with the sample correla- 
tions where Rx^ is a decreasing function of T. In fact, the shape of the turbulence spectrum is not taken 
into account in such empirical relations. 

2.2.2. Influence of sound 

The problem is now to s_tudy the interference between a laminar boundary layer and a traveling 
sound wave of a single frequency f. It will be assumed that the wave propagates in the main flow direction 
and that its wave-length is infinite. In these conditions, the free-stream velocity is given by : 

Ue(t) = U^d + N sin lot), with u = 277? (7) 

N is usually close to 10~^. 

a) Fundamental aspects (zero pressure gradient) 

First of all, it is interesting to know the response of the BLASIUS boundary layer to the imposed 
external oscillation. An important parameter is the Strouhal number S = OIX/DQ. The unsteady laminar bound- 
ary layer solutions give the following results /30/ : 

U(x, y, t) = UQ [fgCx, y) + G(x, y, t)J      with : (8) 

G = N cosut [f^ + nfg/Z + 0(S)]  at sT.all S (9) 

G = N Qiostot - exp(-n) cos(a)t - n) + 0(S~^/^)]] at large S     (10) 

with k = (a)/2v)''^ and n = yk. f' is the classic BLASIUS solution. 



2-8 

When S is small (equation (9)), the unsteady profile is in phase with the free stream. We will 
assume that this regime corresponds to stable boundary layers. Therefore, our purpose is restricted to large 
values of S (equation (10)). In this case, the unsteady layer does not grow any longer with x and (8) may 
be written as : 

U(x, y, t) = UQ [f^(x, y) + N ^^  sin(IJt + <}) (n) )I| (U) 

The relative amplitude function -rrr- and the lag function CD  are plotted in figure 24. A double 
o 

layer structure appears clearly : near the wall, a layer exists in which variations in amplitude and in 
phase occur (STOKES layer) ; a second layer in phase with the free stream extends in the outer part of the 
boundary layer. The ratio of the STOKES layer thickness to the steady boundary layer thickness is about 
O.e/s'/ . For S = 25, the unsteady effects occur at y/6 < 0.12. 

Experiments show that the free response of the boundary layer to the imposed sound disturbance 
is essentially composed of TOLLMIEN-SCHLICHTING waves having the same frequency. 

A careful study of the development of instability waves induced by sound was made by SHAPIRO 
/31/, /32/. The experiments were performed on a flat plate Installed in a low turbulence (T = 0.04 10~^) 
subsonic wind tunnel. 

The growth of disturbances measured under the presence of acoustic excitation (f = 500 Hz) is 
plotted in figure 25 and compared with the results given by the linear stability theory. Measurements, at 
each station were taken at the position of maximum disturbance amplitude in the boundary layer, for the 
frequency of the imposed sound field. A standing wave pattern appears for R61 < 1 000 (the initial ampli- 
tude A  is the mean value of A in this region) and disappears slowly downstream. In fact, two types of 
oscillations coexist in the boundary layer : the imposed oscillations (sound) and the natural oscillations 
(TOLLMIEN-SCHLICHTING waves). If it is assumed that both types of waves have a similar amplitude, then the 
instantaneous perturbation u' recorded by the hot wire Is : 

u' - sinojt + sin(kx - a)t) , with (i) = 10 (12) 

The mean square value of u' is simply : 

u'^ - 1 - coskx (13) 

which corresponds to the experimental results at the lower values of R61. One may notice that the wave- 
length of the standing wave pattern is the wave length of the TOLLMIEN-SCHLICHTING waves. More elaborate 
computations of this process were made by THOMAS and LEKOHDIS /33/ and led to the same conclusions. See also 
works done by MURDOCK /30/ and TAM /34/. 

When the TOLLMIEN-SCHLICHTING waves enter the unstable region, their amplitudes become larger than 
that of the forced oscillations ; the standing wave pattern is less and less visible, and the evolution of 
the natural waves is well described by the stability theory. In a first approximation, the main effect of 
the sound takes place near the leading edge ; it is to set an initial condition for the TOLLMIEN-SCHLICHTING 
oscillations rather than continuously interacting. Further downstream, the sound and the natural waves 
propagate independently of each other. 

Another Interesting result of SHAPIRO's work is shown in figure 26. The initial mean amplitude AQ 
of the streamwlse fluctuation is plotted as a function of the exciting acoustic velocity. "Clearly the rela- 
tion is not only linear, but essentially one to one, except when the sound level is so low that the excita- 
tion is dominated by stream turbulence." 

b) Effect of sound on transition location 

When the acoustic frequency (or a strong harmonic) falls in the range where TOLLMIEN-SCHLICHTING 
waves are unstable, the onset of turbulence may be displaced. An example of this effect was already noted 
in § 2.2.1. a). A hot wire senses both turbulence and sound, and what is called "turbulence Intensity" con- 
sists of a mixing of both types of disturbances. In SCHUBAUER-SKRAMSTAD experiments, the addition of anti- 
turbulence screens reduced effectively the true turbulence, but had little effect on the acoustic disturban- 
ces, which "assumed the dominant responsibility for transition " /35/. WELLS eliminated the sound sources 
(sonic throat) and obtained transition Reynolds number of about five millions. 

In a later study /36/, SPANGLER and WELLS systematically investigated the effects of acoustic 
noise fields of discrete frequencies. The evolution of Rx against the free-stream disturbance intensity 
is shown in figure 27. Curve B indicates that high sound levels may be encountered without change in the 
transition location : in such cases, sound gives rise to TOLLMIEN-SCHLICHTING waves falling outside the 
dangerous band. If it is not the case, the transition Reynolds number may be dramatically reduced (curves E, 
D and C). A more quantitative study of these experimental results is difficult, because the sound generator 
created harmonics, which in some cases, were as strong as the fundamental frequency. (By the way, we can 
note that SPRANGLER and WELLS studied also the influence of grid-produced turbulence. The results plotted in 
figure 27 show a stronger effect than the other results /I/, /26/ over the same range of turbulence inten- 
sity. This demonstrates one more time that there is not a universal Rx^(T) curve). 

KNAPP et al. /lO/ Introduced sound into their axisymmetric wind tunnel from a loudspeaker placed 
ahead of the contraction cone. The sound frequency was that leading to transition in natural conditions. 
The transition location obviously moved upstream. In addition, all transition regions (two and three- 
development of the waves, breakdown) were fixed relative to an axial position as in the presence of a vi- 
brating ribbon : for example, all the waves break down at the same streamwlse location. 
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^- • 3 •  Combined influence of pressure gradient and free-stream turbulence 

2.3.1. Linear £tability_theory results 

In order to clarify the parameters acting on the stability properties, stability calculations 
were performed by many authors on the similar FALKNER-SKAN profiles. Let us recall that these profiles cor- 
respond to external velocity distributions of the form 

Ue = kx (14) 

A2 
^   In such flows, some important parameters such as the shape factor H or the POHLHAUSEN paramete 

6 /v.dUe/dx remain unchanged in the streamwise direction. 

The main result of the stability calculations is that basic velocity profiles with an inflexion 
point (decelerating flows, A2 < 0, H > 2.59) are more unstable than those developing in negative pressure 
gradients (accelerating flows, A > 0, H < 2.59) : the critical Reynolds number decreases rapidly, the am- 
plification factors become very large and, when the Reynolds number goes to infinity, there is always a 
range of unstable frequencies (inflexional instability). On the contrary, profiles in accelerating flows 
have a neutral curve which tends to be closed at large Reynolds numbers (viscous instability). The following 
table /3/ gives some numerical results : 

m H A, R«lcr 

1 2.218 0.0854 12 490 Two-dimensional stagnation point 

1/3 2.2 98 0.0613 7 680 Axisymmetric stagnation point 

0 2.591 0 520 BLASIUS profile 

- 0.0654 2.963 - 0.0407 138 

- 0.0904 4.032 - 0.0680 67 Separation profile 

In a general case, however, the laminar boundary layer does not develop under similarity condi- 
tions. This means that at each streamwise position, a given frequency will be placed into a different sta- 
bility diagram, defined by the local mean velocity profile. On a numerical point of view, stability calcu- 
lations must be performed step by step. 

The strong influence of pressure gradient on stability is illustrated in figure 28, which present^ 
experimental results obtained by SCHUBAUER and SKRAMSTAD in natural conditions /I/. The figure shows oscil- 
lograms of the u-fluctuatlon on a flat wall with a non uniform external velocity. The upper half of the 
diagram indicates that a negative pressure gradient damps out the oscillations, whereas the positive pres- 
sure gradient, which succeeds, causes a strong amplification and produces transition. 

2.3.2. Practlcal_calculation_of_the_critical_Re2nold^ number 

Although the critical point is usually located far upstream the transition onset, it is often 
useful to calculate it for analyzing experimental results. The most obvious method is to solve the stability 
equations, but this can lead to complex and time-consuming computations. 

For any non similar flow, it is easier to plot the streamwise evolution of the thickness-momentum 
Reynolds number R6 for the considered case, and to compare it with the local, "fictitious", critical Reynolds 
number RG j. Figure 29 presents an application of this method. If R6 < RO^^.^, the flow is locally stable. 
If Re > RO^^j, the flow is locally unstable. The true critical abscissa is located at the point where 

Re = RBj-rf. For practical applications, it may be assumed that RB^^f  depends on the local shape factor only • 
roximate representation of the stability calculations is the following : an approxa 

R9 
erf exp f    - --] (15) 

In numerical procedures where the local boundary layer equations are solved, it is possible to 
use the DUNN-LIN /37/, /38/ formulation : .    ^ possioxe to 

RO 
erf 

is solution of the equation 

„ith u'=|M^ ,11" =l!MUe) 

D" U' c 
c  o  

c 

with U' 

0.58 

3(U/Ue)"l 
_3(y/e)J y=0 (16) 

(17) 

8(y/9) 3(y/e)^ 

In the example given in figure 29, the pressure gradient is at first negative. Due to the low 
values of RO and to the high values of Re    the boundary layer is stable. Further downstream, the pres- 
sure gradient vanishes and then becomes positive. The shape factor increases, the fictitious critical 
Reynolds number decreases rapidly and the flow enters an unstable region. For such a case the critical 
abscissa is close to the maximum velocity point. 
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2.3.3. Effect of_positlve_pressure_gradients 

a) Transition without Reparation 

Recently, ARNAL et al. /39/, /40/ performed experiments in decelerating flows. The experimental 
set-up was already presented In § 2.2.1.. Changing the divergence of the conical wall around the central 
cylinder made possible to obtain various pressure gradients. Six cases, labelled A, B, C, D, E and F were 
studied. The corresponding distributions of the external velocity are plotted in figure 30, where U^gf 
refers to the velocity measured at the junction cylinder-ogive. The case A corresponds to the flat plate 
flow previously mentioned (§ 2.2.1. b)). In the other cases, the boundary layer is subjected to positive 
pressure gradients. The free-stream turbulence level T is nearly constant from one configuration to another 
and is equal to about 0.2 10"^. In any case, the critical abscissa was found to be located near the maximum 
velocity abscissa, i.e. x -  0.15 m. 

Figure 31 shows two signals recorded in the case D for which transition starts at x = 0.44 m. 
At X = 0.35 m, the signal looks like the one presented in § 2.2.1. b) for the flat plate case : the insta- 
bility waves are small, compared with the low frequencies fluctuations. At the second station, however, the 
waves have developed, and the spectrum practically reduces to a single peak at f = 360 Hz. The measured 
evolution of the amplitude profile corresponding to this frequency is plotted in figure 32 and compared 
with stability calculations, in which the local mean velocity profile (H = 2.96) was introduced. A zero 
amplitude point, associated with a phase reversal, is always present. Two maxima are visible near the wall, 
the second one being closely related to the existence of the inflexion point. 

Figure 31 indicates that in a decelerating flow, the unstable waves can reach amplitudes larger 
than in the zero pressure gradient flow (for a given disturbances environment). This confirms the smoke vi- 
sualization results obtained by KNAPP et al. /lO/ : these authors observed that in an adverse pressure gra- 
dient, the waves were more clearly visible than in the flat plate case. Similar observations were made by 
COUSTEIX and PAILHAS /41/, who studied the transition phenomena in a strong positive pressure gradient. More 
detailed information will be given in Section 3 of this chapter. 

As the transition location is approached, the three-dimensional, spanwise variations are weaker 
than in the flat plate case. The negative spikes become less and less numerous and breakdown tends to be a 
continuous process. 

For a given value of T, the principal effect of a positive pressure gradient is to reduce the tran- 
sition Reynolds number. Figure 33 shows the evolution of the shape factor as a function of Rx, for the six 
cases studied at ONERA/CERT. The laminar calculations indicate that transition always occurs before laminar 
separation. In the following lines, we will define the transition onset as the location where the shape 
factor exhibits a sudden negative slope. Another presentation of the results is given in figure 34, where 
the momentum-thickness Reynolds number at the transition onset is plotted as a function of the shape factor 
at the same location. As it can be expected, the transition Reynolds number decreases rapidly when the pres- 
sure gradient intensity increases. This curve does not constitute a transition criterion, but is only a plot 
of experimental results. The length of the transition region is also reduced, as it will be discussed later. 

b) Separatlon_bubbles 

When the pressure gradient is very strong, the laminar boundary layer often separates and transi- 
tion may occur in the separated layer. This intricate problem was studied by many authors (see review by 
TANI /42/). Recently, detailed measurements were performed at ONERA/CERT by GLEYZES, COUSTEIX and BONNET 
/43/, /44/, who investigated separation bubbles occuring near the leading edge of an airfoil at incidence, 
downstream of the suction peak. A first series of experiments was carried out on a 200 ram chord ONERA LCIOOD 
profile. Examples of external velocity distributions are presented in figure 35, for a fixed incidence 
(a = 7°30). In any case, laminar separation is present, but due to interactions between viscous and inviscid 
flows, the velocity distribution depends strongly on the chord Reynolds number R .  For the so-called 
short bubbles (here, for U^ > 34 m/s or R > 0.45 10^), the velocity distribution is not far from that ob- 
tained at high Reynolds numbers, except in a small domain around the bubble (0.01 m < x < 0.02 m). For 
U^ < 34 m/s, a sudden change occurs, corresponding to the bursting of a short bubble in a long bubble. In 
fact, no discontinuity in the physical size of the separation seems to exist. This can be seen in figure 36, 
where momentum thickness at 75 % of chord is plotted, versus upstream velocity : there is continuity in 9 
at the bursting point. Nevertheless, the slope of the curve changes rapidly at this point. On a practical 
point of view, this figure shows the unfavourable effects of long bubbles, because the momentum thickness 
is directly related to the drag coefficient of an airfoil. 

A study of the short bubbles has then been made on a special model, called 'enlarged leading edge". 
This model corresponds to a 2.5 m chord ONERA D airfoil, truncated and fitted with a blown flap. An impor- 
tant part of the experiments consisted of hot wire and LDA measurements around the separated region. Evo- 
lutions of the shape factor obtained with both methods are compared on figure 37, for a configuration where 
U -  13.6 m/s and T = 0.4 10~^ . Discrepancies exist in the separated region, due to the presence of back- 
flow close to the wall ; LDA gives more physical values, because it is able to measure negative velocities. 
The separation and reattachment points are indicated by arrows. The shape factor reaches important values 
(higher than 8), then decreases rapidly towards turbulent values. High frequency instability waves are 
recorded in the laminar boundary layer and transition starts at R9J -  280. 

On the same model, high free-stream turbulence levels were generated by setting a grid at the 
beginning of the test section. For T = 2.5 10~^, transition begins upstream of the theoretical laminar se- 
paration point (R6„ =: 220) and no more separated region seems to exist. 
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2.3.4. Effects of negative pressure gradients 

Detailed transition experiments in negative pressure gradients are not numerous. As the flow 
acceleration acts to stabilize the laminar boundary layer, the lengths required for such studies would be 
too Important in laboratory conditions, except if the free-stream turbulence level is high. In such a case, 
the external turbulence tends to counteract the favourable effect of the negative pressure gradient. This 
interplay can be encountered in many practical situations such as turbomachlnery and was Investigated, for 
instance, by TURNER /45/ and by BLAIR and WERLE /46/, /47/. 

BLAIR and WERLE measured the characteristic parameters of boundary layers developing on a very 
slightly heated wall. Two accelerating flows were studied. The following expression provides accurate repre- 
sentations of the velocity distributions : 

Ue = C (A - x)""  (U in m/s and x in m) (18) 
e 

where a was close to unity, so that the acceleration parameter K = v/Ue^.dUe/dx was nearly Independent of 
X. Free-stream turbulence levels ranging from 0.7 to 5 per cent were generated through the use of rectangu- 
lar bar grids. 

The experimental evolutions of the shape factor and of the momentum thickness are plotted in 
figure 38 for two different configurations. The velocity distribution is the same in both cases (C = 89.9, 
A = 5.08, a = + 1.066, K = 0.2 10~ ), but the free-stream turbulence level is respectively equal to 1 10~ 
(grid 1) and 2 10~  (grid 2) at the leading edge of the plate. The overall variation of the shape factor is 
the same as In positive pressure gradient, except that the laminar values are lower. 

Figure 39 compares the streamwise variation of the momentum-thickness Reynolds number to that of the 
fictitious critical Reynolds number. Experimental positions of the transition onset are indicated by arrows. 
It appears that the laminar boundary layer remains well below the stability limit. This means that the 

linear processes are completely "bypassed" for these high.turbulence levels. 

2.4.  Transition in oscillating external flow 

This paragraph deals with external flows varying slnusoldally around a mean value U^, that we will 
assume independent of x : 

Ue = Uo(l + N slnlot),  u = 2TTT (19) 

This is exactly the expression already used in § 2.2.2.. But the amplitude factors are now larger 
than those representing sound disturbances : typical values are ranged from 0.1 to 0.3, instead of lO"^. 
At large Strouhal numbers, the amplitude function AU/AUQ and the phase function A within the laminar 
boundary layer remain the same as those depicted in figure 24. Nevertheless, the velocity profile measured 
at a fixed station exhibits, during a cycle, large departures from the BLASIUS profile ; an Instantaneous 
reversing flow may even occur near the wall, but this case will not be considered further. Such large values 
of N are usually achieved, either by a rotating vane /48/, /49/, /50/ or by driving periodically a plate in a 
steady stream /5I/. 

2.4.1. An example of periodic transition 

Figure 40 presents a series of photography obtained by OBREMSKI and FEJER /48/ in the following 
experimental conditions : N = 0.15, UQ = 16.6 m/s, f = 12.8 Hz. The upper trace in each photograph repre- 
sents the oscillating component of the free-stream velocity and the lower trace records the instantaneous 
velocity at y/6 = 0.3. Six streamwise stations are considered. The second photograph (x = 10 in) shows that 
small waves (wave packet) are present in the boundary layer near the point of minimum instantaneous velocity. 
At the 14 in. position, the waves increase in amplitude and turbulent fluctuations appear. Further downstream, 
the turbulent patches increase in duration and the wave packets disappear. At the last station, the boundary 
layer is fully turbulent. It Is important to note that all phenomena occur during a single cycle of the 
forced oscillation. Figure 41 summarizes these events in a space-time representation, where the time is 
made dimenslonless with the period of the oscillation. Each photograph in figure 40 corresponds to a verti- 
cal cut in this diagram.. The unsteady pressure gradients with large amplitude tend to make the phenomenon 
two-dimensional, as it was already observed in steady positive pressure gradients ; as a consequence, the 
turbulent patches "appear to extend ribbonlike across the plate and in this differ from the three-dimensional 
spots in steady boundary layer transition" on a flat plate /48/. 

By using conditional sampling techniques, CGUSTEIX, HOUDEVILLE and DESOPPER /49/ were able to plot 
the phase averaged velocity and fluc_tuatlon profiles at various Instants throughout the cycle (experimental 
conditions : N = 0.16, UQ = 27 m/s, f = 37 Hz). In laminar regime, the shape factor varied typically between 
2.7 and 3.5 for Strouhal numbers close to unity. The wave packets were found to occur at Instants closely 
linked with the existence of inflexion points in the instantaneous velocity profiles. Moreover, the waves 
presented the characteristic features of the TOLLMIEN-SCHLICHTING waves. 

This suggests that instability waves appear as free responses to the external disturbances and 
that their subsequent behaviour depends on the characteristics of the instantaneous profiles. In the 
aforementioned experiments, the c_ircul^ar frequency OJ of the waves was an order of magnitude greater than 
that of the imposed oscillation, u(a)/aj -  30). This enabled OBREMSKI and MORKOVIN /52 / to reconstruct the 
history of the wave packets by using a quasi steady approach : at each time, the Instantaneous velocity 
profile was Introduced as a steady basic profile into the linear stability equations, and the total ampli- 
fication rate of waves traveling downstream was computed. Figure 42 shows a scheme of the theoretical 
development of a wave packet : the likeness with the second record presented in figure 40 is striking. 
Moreover, a good agreement was achieved between the experimental and theoretical values of the most un- 
stable frequencies. 
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2.4.2. Periodic and aperiodic transition 

OBREMSKI and FEJER /48/ measured the transition location for a wide range of the parameters N, f 
and UQ. They deduced the curves reproduced in figure 43, which represent the evolution of the transition 
Reynolds number as function of N. An intriguing feature is that the experimental data correlate along two 
distinct, discontinuous curves AA' and BB'. OBREMSKI and FEJER explained this behaviour by introducing 
the non steady Reynolds number R^g = L(Ano/2Trv), in which L = Ug/f represents the distance travelled by a 
free-stream particle in one cycle of imposed oscillation. They stated that, when R^g is lower than a_criti- 
cal value equal to 25 000, the transition Reynolds number is constant and independent of both N and f  _ 
(curve AA'). For higher values of R  , the transition Reynolds number depends strongly on N, but not on f 
(curve BB'). But, as pointed out by LOEHRKE et al. /35/, this explanation is applicable only for the special 
natural disturbances which were present in the considered wind tunnel. On the other side, experiments con- 
ducted in negative or positive pressure gradients indicate other critical values of R^^ • 

A more general explanation was developed by OBREMSKI and MORKOVIN /52/. The basic assumption is 
that the wave packets break down into turbulence if they reach a certain critical threshold, T^ : 

- Wave packets which were amplified beyond Tr during the unstable part of a single cycle of the 
oscillation should correlate according to BB'. Photographs presented in figure 37 as well as experiments 
performed by COUSTEIX et al. /49/, constitute examples of this mechanism. Transition is said to be periodic. 

- It is possible, however, that the wave packets remain below T^, during the unstable part of the 
first cycle. Quasi steady calculations indicate that the remaining part of this cycle is more stable and the 
waves will be more or less damped, until they reach the unstable part of the following cycle. In addition, 
the boundary layer becomes thicker, and the unstable frequency range shifts continuously towards lower 
frequencies. Such transitions require more than one cycle to develop and are likely to correlate according 
to AA'. As the breakdown becomes more irregular, this process was termed aperiodic by OBRESMKI and FEJER /48/. 

2.4.3. Effects of l2wer_values_of u/_u 

All the precedent experiments concerned high ratios of TOLLMl^EN-SCHLICHTING frequency oi to driving 
frequency H.   In order to investigate the effects of lower values of oj/o), it was found useful to generate 
artificial wave packets by means of a controllable disturber. LOEHRKE (thesis, summarized in /35/) used a 
resistance heating wire stretched across the span of a flat plate, at 0.1 < y/6 < 0.3. Changing the wire 
temperature led to horizontal oscillations generating wave packets of known frequency and known amplitude. 
Tests conducted with to/u) > 10 supported the OBREMSKI-MORKOVIN interpretation of OBREMSKI-FEJER experiments 
(5 2.4.2.): the jump from the aperiodic transition to the periodic transition was accompllsh^ed by increasing 
the Initial amplitude of the wave packets and not by increasing Rj,g. At lower values of oi/o) (in the range 
3-5), no evidence of early transition was found. "Rather, one could anticipate less instability, because 
the TOLLMIEN-SCHLICHTING vorticlty interaction has insufficient time to develop during any cycle" /35/. 

As the forced oscillation frequency 0) rises at constant D^, the natural instability frequency 
seems to lock onto the forcing frequency (to/u) =1). It is exactly what happens with an acoustic excitation 
(see § 2.2.1.), except that the values of N are now larger. As in SHAPIRO's experiments, a standing wave 
pattern is found to occur (LOEHRKE /35/) , the wave-length of which being equal to the TOLLMIEN-SCHLICHTING 
wave-length. But, due to the large amplitude of the forced oscillation, the growth of the unstable waves 
cannot be computed with a simple steady analysis as in § 2.2.1.. 

2.5.  Influence of wall roughness 

In this section, the roughness streamwise position xj^ will be characterized by Sl-^  and 6^^, which 
represent respectively the displacement and momentum thicknesses of the laminar boundary layer in the ab- 
sence of roughness. Two other important parameters are the Reynolds number RS^^ = Ue9]^/v and the ratio k/Sl;,., 
where k is the roughness height. 

2.5.1. Two-dimensional Roughness 

a) Transition process l>ehind_a_wlre_normal_to_the_flow 

The mechanism by which a two-dimensional roughness induces transition was studied in great detail 
by KLEBANOFF and TIDSTROM /53/. A cylindrical rod was attached to the surface of a flat plate, with its axis 
perpendicular to the mean flow direction. Emphasis was placed on measurements within the recovery zone, i.e. 
"the region in the downstream vicinity of the roughness where the mean flow has been distorted by the pre- 
sence of the roughness." 

Figure 44 shows the evolution of the shape factor versus x - xj^^, for a case where k/6lj^ = 0.89 
and RO, = 265. As it can be expected, the boundary layer separates immediately downstream of the rod ; 
further downstream, the shape factor decreases and the mean velocity profile returns to the BLASIUS distri- 
bution. However, as it will be discussed later, the transition moved forward from its "natural" position. 
The recovery length is about 40 k. 

By introducing a hot wire in the boundary layer, KLEBANOFF and TIDSTROM observed waves of large 
amplitude. They concluded that, according to linear stability theory, the inflexional velocity profiles 
encountered in the recovery zone caused a rapid amplification of the Instability waves. The disturbances 
reaching the reattachment location are, then, larger than they would be without roughness and lead to a 
premature transition. The rod does not introduce new disturbances into the boundary layer, but strongly 
amplifies the existing perturbations. 

HAMA, LONG and HEGARTY /54/ made water-tank observations of the flow pattern behind a wire. 
Dye injections revealed at first the appearance of spanwise, two-dimensional waves ; as they are swept 
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downstream, the waves form three-dimensional vortex loops having a well definite wave-length. This peak- 
valley system leads to the breakdown into turbulence. Transition occurs essentially in the same manner as 
it would occur on a smooth surface. 

b) Movement of the transition location 

When increasing the roughness height or the velocity, transition moves gradually upstream. A large 
amount of experimental work was done for describing this forward movement. An account of these experiments 
can be found in /55/. An example of correlation proposed by DRYDEN is presented in figure 45. The ratio 
Rxx/(Rx^)jj is plotted as a function of k/51]^, where (Rxrj,)  is the transition Reynolds number in "natural" 
conditions. Cylindrical wires are used for all experiments, except for those made by QUICK who investigated 
the effects of flat strips. An additional parameter is the free-stream turbulence level T. It can be seen 
that appreciable effects occur for roughness elements of height equal to 0.2 to 0.4 Sl]^,   but that the for- 
ward movement of the transition is progressive. 

2.5.2. Three-dimensional roughness 

The effect of a three-dimensional roughness element is very different from that of a two-dimensional 
element, in the sense that the change in the transition location is more abrupt. This movement is sketched 
in figure 46, where the transition Reynolds number is plotted as a function of Rv = U]jk/v. U^ is the laminar 
velocity at y = k in the absence of roughness. If some three-dimensional roughness element (sphere, small 
vertical rod) is placed on a flat plate, when increasing the free-stream velocity, the transition Reynolds 
number is at first unaffected and remains equal to that observed on a smooth surface. When the velocity 
exceeds some critical value Ue,,, transition moves rapidly .forward : a turbulence wedge is formed ; Its ver- 
tex is located close to the roughness. For spherical roughness elements, the critical value of R, is about 
500 to 600 /55/, /56/. ^ 

As pointed out by TANI /57/, no satisfactory explanation has yet been offered for this critical 
behaviour. Because the separated region is narrow, the mechanism valid for two-dimensional elements (§ 2.5.1.) 
cannot be put forward. For Ue < Ve^   (subcritical velocity), GREGORY et al. /58/ and MOCHIZUKI /56/ disclosed 
the existence of two sets of streamwise vortices downstream of a single roughness element (see figure 47, 
reported in /57/). One is a pair of spiral filaments close behind the roughness, the other is a horseshoe 
vortex wrapped round the front of the element and trailing downstream. These vortices generate a three- 
dimensional laminar boundary layer with a cross-flow velocity component ; there is a possibility that tran- 
sition occurs via a cross-flow instability, as it is the case for rotating disk or swept wing. 

For supercritical velocities (Ue > Ue;,), a wedge-shaped turbulent region extends downstream of the 
roughness. SCHUBAUER and KLEBANOFF /59/ examined the turbulence wedge of a sphere by using hot-wire anemo- 
meter. They found that the wedge comprises a fully turbulent core beyond which the turbulence is intermittent. 
Measurements made by MOCHIZUKI /56/ indicate that the vertex angle of the wedge becomes larger in proportion 
to the velocity ; typical values are ranged from 10° to 15°. This spanwise growth results from the "trans- 
verse contamination" process, which takes place for turbulent regions embedded in a laminar boundary layer. 
The growth of the turbulent spots present another example of such mechanism (section 3). Another striking 
feature of the turbulence wedge is the presence of streamwise structures close to the wall, which can be 
related to the stationary vortices arising from cross-flow Instability. 

2.5.3. ^SH^^^^EZ-iSy^E-^^EiEPiSi 

On a practical point of view, the study of roughness effects is important in two aspects. First 
of all, surface roughnesses such as rivet heads or insects may cause early transition and affect, for ins- 
tance, aircraft performances. Secondly, boundary layer tripping by rough devices is often used in wind 
tunnel experiments in order to fix the transition at a given location. In both cases, it is of great signi- 
ficance to be able to estimate the downstream boundary layer behaviour. 

Experiments on boundary layer tripping have been carried out at ONERA/CERT in zero, positive and 
negative pressure gradients /60/, /61/. As an example, we will briefly present some results obtained on a 
flat plate by using spanwise carborundum bands, in which the grains are glued side by side (maximum possible 
density). Figure 48 shows a plan view photograph of a carborundum band and a typical evolution of the rough- 
ness height in the spanwise direction. This tripping device constitutes in fact a two-dimensional assem- 
blage of three-dimensional elements. In any case, the band width is about 10 filj^ ; k represents the nominal 
value of the carborundum grains size. 

If one keeps Ue constant but increases k, transition moves progressively upstream towards the 
roughness location. Figure 49 shows mean velocity and turbulence profiles in a case where the boundary 
layer is turbulent just downstream of the tripping device (xj^ = 0.148 m, RS, = 215, k/61(^ = 1.47). High 
turbulence intensities are not created on the roughness itself, but rather in the downstream separated 
region. We believe that the transition mechanisms are not very different from those described by KLEBANOFF- 
TIDSTROM 753/. 

The curve plotted in figure 50 represents the critical grain size required for fixing transition 
at the roughness location. This critical size depends on RS  ; it is obviously equal to zero when RO, is 
equal to the "natural" transition Reynolds number, which is close to 1 000 in the present experiments. 

The evolution of the momentum thickness is given in figure 51 for various configurations for which 
transition is "fixed" at the carborundum band. It is clear that increasing the grain size produces an over- 
thickness of the boundary layer due to the roughness drag. The step A9 at the transition location can be 
expressed as : 

AS = i C k (—) ' (20) 

where the drag coefficient C-Q  is close to 0.5. 
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TOTLAND /62/ studied the effects of regularly spaced protrusions made by running a tooth wheel 
over an adhesive film. He found drag coefficients ranged from 0.10 to 0.70 depending on the shape of the 
protrusions. Another Interesting finding is that a dried thin film of oil flow mixture commonly used in 
flow visualizations may reduce the transition Reynolds number by roughly 10 %. An overall view of TOTLAND's 
results is given in figure 52, where the streamwise evolution of R6 is plotted for various types of rough- 
ness. 

2.5.4. Distributed_roughness 

As far as the effects of distributed roughness on transition are concerned, only scant results 
exist. FEINDT /63/ investigated the influence of sand roughness on the transition Reynolds number, for dif- 
ferent pressure gradients and different grain sizes. The measurements were performed in a convergent and a 
divergent channel of circular cross-section, where T has the relatively high value of 10~ . Figure 53 pre- 
sents a plot of FEINDT's results as reported by SCHLICHTING /64/ ; the transition Reynolds number is given 
as a function of Uek/v. Each curve corresponds to different values of the pressure gradient. It appears 
that Rx„ steeply decreases for Uek/v > 120. Below this value, there is no influence of the roughness and 
transition takes place at the same location as on a smooth surface. 

2.6.  Influence of suction 

In order to illustrate the effects of suction on the flow stability properties, let us consider 
at first the so-called asymptotic suction profile. This profile is obtained when a continuous suction is 
applied ; at some distance from the leading edge, the boundary layer becomes independent of the x coordinate 
and it can be easily demonstrated that ; 

V(y) = - VQ   (VQ is the absolute value of the suction velocity) 
(21) 

U(y) = Ue Q - exp(Voy/v)3 

The displacement thickness and the shape factor are equal respectively to - v/V and 2. Stability 
calculations presented in /65/ indicate that the critical Reynolds number R^lcr is about 42 000. Other nume- 
rical results give higher values, of the order of 50 000 (see discussion in /5/). It appears that the asymp- 
totic suction profile possesses a critical Reynolds number which is about one hundred times larger than the 
one of the BLASIUS profile. 

Stability computations were performed for similar and non similar velocity profiles, including 
the combined effects of pressure gradient and suction /5/, 192,1.   As a result, the stabilizing effect of 
suction Is evident. 

In fact, suction acts in two ways. Firstly, it reduces the boundary layer thickness. Secondly, it 
creates a velocity profile which is very stable. Both effects are favourable for delaying transition, so 
that boundary layer suction constitutes the most effective method for viscous drag reduction (see biblio- 
graphy given in /94/), 

Because it is structurally difficult to entirely manufacture a surface of porous material, efforts 
have been made to discretize suction by slots, perforated surfaces or porous strips. 

One of the first wind tunnel experiments concerned with boundary layer control by suction was 
done by KOZLOV, LEVCHENKO and SHCHERBAKOV /66/. They made detailed mean flow and disturbance measurements 
over a single slot of a flat plate and showed a significant reduction of the disturbance amplitude in the 
neighbourhood of the slot. But, as pointed out by SARIC and REED /93/, suction slots are expensive  to fa- 
bricate and require high mass flow rates, which can lead to instabilities such as separation and backflow. 
On the other side, perforated surfaces can introduce three-dimensional disturbances into the boundary layer. 
For these reasons, attention turned to strips of porous material. 

Recent experiments were conducted in this way by REYNOLDS and SARIC /67/ on a flat plate equipped 
with porous suction panels. TOLLMIEN-SCHLICHTING waves are introduced into the laminar boundary layer by a 
vibrating ribbon and their evolution is studied by hot-wire anemometry. Examples of results are shovra in 
figures 54 and 55. In figure 54, the shape factor variation is plotted for the two cases : with and without 
suction. Wi-_en it is present, suction is applied locally by a spanwise porous strip, at the location indi- 
cated by an arrow. The abscissa R is proportional to /x.  and VQ = 5.7 10"^ Ue. As expected, suction leads to 
a decrease in the shape parameter and the extent of the upstream and downstream influence of the suction 
strip can be observed. The decrease in H and the suction rate are relatively small, but it must be kept in 
mind that excessive suction amounts lead to an over-thinned boundary layer, which becomes very sensitive 
to surface roughness. 

Figure 55 shows the evolution of the amplitude of a single frequency disturbance generated by the 
vibrating ribbon. The suction is intense enough to stop the disturbance growth and cause decay near the suc- 
tion strip. A good agreement is obtained with the theory of REED and NAYFEH. In a general manner, experiments 
indicate that suction is more effective when applied at Reynolds numbers close to the lower branch of the 
neutral curve, than when applied in the region of maximum growth rate. 

NAYFEH and EL-HADY /68/ report experiments performed by LACHMANN et al. on a 2.44 m chord model. 
By using fourteen porous strips, 1.9 cm wide, laminar flow down to 95 % chord was achieved at a chord 
Reynolds number of 15 10^. Flight tests, however, showed difficulties in maintaining smooth joints at the 
edges of the strips. 
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2.7.  Influence of transverse curvature 

The effects of transverse curvature, which occur in boundary layers on axisyimnetric bodies, recei- 
ved little attention. To our knowledge, the only available stability calculations are those performed by 
MORRIS and BYON /69/, who studied the boundary layer developing on a circular cylinder, the axis of which 
is aligned with the direction of the uniform free-stream. 

An important parameter is the ratio 61/a, where a is the cylinder radius. Figure 56 shows a compa- 
rison between the BLASIUS profile and a profile computed by MORRIS and BYON for 61/a = 0.3781. n is a non 
dimensional distance. It can be seen that the profile subjected to a transverse curvature has a shape factor 
lower than that of the BLASIUS profile. 

With the parallel flow approximation, the stability equation takes the form : 

2 ^rv^2^_   ^^„. ^ ^^^„ , ^3 _ 2^^^. ^ („. , 2^, 3^.p 
j-O j. 

- laR [(U - ^) (Vp" + ^ - (a^ + ^2-)>P)+ (^ - U")^ 2 
(22) 

which reduces to the ORR-SOMMERFELD equation when r (distance to the cylinder axis) goes to infinity. 

Figure 57 presents a comparison of neutral curves for the BLASIUS solution and the boundary layer 
on a cylinder with Reynolds number U^a/v = 71 122. At all Reynolds numbers, the cylinder boundary layer is 
more stable than the plane boundary layer : the transverse curvature has a stabilizing influence. It should 
be observed that the ratios 61/a involved in figure 57 are rather small (6l/a = 0.014 for R61 = 1 000). 
Unfortunately, MORRIS and BYON do not give neutral curves for other values of the radius Reynolds number. 
Increasing 6l/a would certainly increase the critical Reynolds number. 

Several experiments were conducted on axlsymmetric bodies in order to avoid the corner effects 
(KNAPP et al. /lO/, ARNAL et al. /28/). So long as the boundary layer thickness is small compared with the 
body radius, the plane stability results may be used with confidence. 

2.8.  Influence of streamwise curvature 

For flows developing over a convex surface, centrifugal forces exert a stabilizing effect, in the 
sense that a displaced fluid element tends to be restored to its equilibrium position. The magnitude of this 
effect is small : LIEPMANN /70/, /71/ found that on convex surfaces up to 61/R = 0.0026, the same TOLLMIEN- 
SCHLICHTING Instability occurs as for the flat plate and the transition Reynolds number remains unchanged. 

On the other hand, the destabilizing effect of centrifugal forces on concave walls leads to the 
formation of pairs of counter-rotating vortices, the axes of which are parallel to the principal flow direc- 
tion (figure 58). This instability, which was first treated by GORTLER /72/, often results in a premature 
transition. 

2.8.1. Theoretical_aspects 

On a theroretical point of view, it is assumed that a three-dimensional disturbance is superposed 
on the basic flow. Its form is : 

(u , V , p ) = (f, ^ , Tl) cos(az)A       \ 
} (23) 

w = h sin(az) A 1 

GORTLER neglected the boundary layer growth (parallel flow approximation), as well as a number of 
terms of order 6/R, where R is the radius of curvature of the surface. Relations (23) are substituted into 
the continuity and the linearized momentum equations ; eliminating the pressure and the cross-flow velocity 
component yields : 

(D^ - 5^ - a)f = M' DU 

(D^ - 5^) (D^ - 5" - a)'P = - 25^G,'fu 
L 

(24) 

All 
5 = aL, 0 = kL 

quantities are made dimensionless with Ue and a characteristic length L ; D = d/d(y/L), 
/v and G = (UeL/v). A/R. GT is the GORTLER number, which appears in the y-momentum eq appears in the y-momentum equation. 

The above set of equations forms a sixth-order system of homogeneous, linear, ordinary differential 
equations and is supplemented by homogeneous boundary conditions (f = *P =0aty=0 and for y -s- «>) . This 
constitutes an eigenvalue problem for the real parameters (a, a, G ). 

For several basic profiles U(y), GORTLER obtained approximate solutions, giving the value of G 
for neutral stability (k = 0) as function of a. After GORTLER, many attempts were made to correct and sup- 
plement his analysis, but these various investigations disagreed often strongly. HERBERT /74/ reviewed these 
works and compared the resulting neutral curves. This comparison is given in figure 59 for the BLASIUS pro- 
file (it is assumed that the effect of curvature on the basic flow can be neglected). The GORTLER number G 
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is formed with the reference length L = /vx/Ue. The discrepancies between the various curves are attributed 
to three factors : 

a) Treatment of the_streamwise £"£Y5^ure 

Since the local  centrifugal force drives the unstable motion, the wall curvature plays a less 
Important role than the overall curvature of the streamlines. GORTLER assumed that the streamline curva- 
ture Is constant at any distance from the wall. Other models were used ; in HSMMERLIN'S calculations /75/, 
for example, the streamline curvature decays exponentially with y. HERBERT /74/ showed that larger rates 
of decay of curvature outside the boundary layer, as well as smaller streamwise extent of curvature, sta- 
bilized considerably the flow. 

b) Boundary layer_growth 

SMITH /73/ was the first to include the normal velocity terms. HERBERT /74/ stated that the bound- 
ary layer growth should be of more importance than for the TOLLMIEN-SCHLICHTING instability. 

c) Numerical.accuracy 

Curves 4, 8 and 9 in figure 59 were deduced from the same set of equations. However, strong dis- 
crepancies exist, especially at low a. FLORYAN and SARIC /76/ suggest that SMITH's numerical method (cur- 
ve 4) may not provide sufficient accuracy and that curve 8 is subject to numerical errors. 

Recently, FLORYAN and SARIC /76/ developed calculations by using a curvilinear system of coordi- 
nates representing streamlines and potential lines of the Invlscid flow. The streamwise extent of the curved 
wall is taken into account, as well as the non parallel effects. Following FLORYAN and SARIC, RAGAB and 
NAYFEH /77/ employed a coordinate system based on the potential- and streamlines. Both papers _|lve nearly 
Identical results. Figure 60 shows curves of constant growth rate for the BLASIUS flow ; when a goes to 
zero, the neutral curve appears to asymptotically level off at G^~  0.47 or G_ - 0.25. In addition, RAGAB 
and NAYFEH computed neutral stability curves for different FALKNER-SKAN profiles. As it can be expected, 
favourable pressure gradients are stabilizing, whereas positive pressure gradients are destabilizing, but 
these effects diminish rapidly as the wave number Increases. 

NAYFEH /78/ studied the effect of streamwise vortices on TOLLMIEN-SCHLICHTING waves. The basic 
flow was the sum of a BLASIUS profile and of an additional flow describing steady counter-rotating vortices 
(Gt5RTLER vortices for example) . The numerical results showed that such vortices have a strong tendency to 
amplify three-dimensional TOLLMIEN-SCHLICHTING waves having a spanwlse wave-length which is twice that of 
the vortices. 

2.8.2. Experimental studies 

A number of experimental studies Investigated the influence of steady vortices on the transition 
process. TANI and co-workers (1962, 1964, 1969) concluded that GORTLER vortices affect indirectly the tran- 
sition by inducing a spanwlse variation in boundary layer thickness, at least when the radii of curvature 
are not very small. They found also that there is at first an exponential growth with x, which diminishes 
downstream. 

WORTMANN /79/ studied the development of instabilities in a water tunnel with curved walls. Using 
the tellurium method, he determined the direction and relative magnitude of the unsteady velocities. The 
first step in the transition process is characterized by the classic GORTLER vortices pattern, as shown in 
figure 61a. The strong spanwlse deformation of the mean velocity profile appears clearly. Further downstream, 
a steady second-order Instability destroys the symmetry of the vortices (figure 61b) and produces between 
each vortex pair boundary layer profiles with several points of Inflexion. WORTMANN suggested that this 
instability was caused by secondary vortices, the wave-length of which were twice those of the GORTLER vor- 
tices. A third-order instability was observed downstream, consisting of regular three-dimensional oscilla- 
tions (figure 61c). The flow became turbulent a few wave-lengths downstream. 

BIPPES and GORTLER /80/ conducted experiments on curved walls along which the GORTLER vortices 
were fairly strong. They made flow visualization by using the hydrogen-bubble technique and obtained accu- 
rate quantitative information of the flow field. Figure 62 presents the experimental profiles of the three 
disturbance velocity components, as compared with the eigenfunctions f, Y and h computed by FLORYAN and 
SARIC /76/. The normal and spanwlse velocity perturbations are an order of magnitude smaller than the stream- 
wise velocity perturbation. 

Concerning the values of the GORTLER number at which transition begins, the experimental results 
are not numerous. Reference is made again to the work of LIEPMANN /70/, /71/, who Investigated the influence 
of convex and concave curvature on the transition location. The left hand side part of figure 63 shows the 
evolution of RB taken at the transition point, versus the ratio 6/R (reported in /64/). As previously sta- 
ted, the effect of a convex wall remains very slight. On the other hand, increasing 6/R decreases notably 
the'transition Reynolds number. LIEPMANN found that the transition Gt5RTLER parameter G       =   (R^./QTR)^     IS 

close to 9 at a very low turbulence level, whereas at higher turbulence levels (T = 0.3 10" ), the value 
was about 6. It must be emphasized, however, that LIEPMANN's data are restricted to slightly curved walls. 
FOREST /81/ indicates that measurements on turbine blades give Gg^ = 4.5 for T == 4 10" . The dependence on 

streamwise pressure gradient is certainly small, due to the strong mean velocity profile dlstorslons intro- 
duced by the GORTLER vortices. In any case, Gg  is about two orders of magnitude greater than the critical 
GORTLER number. 
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3 - THE TRANSITION REGION : TURBULENT SPOTS AND INTERMITTENCY 

The major part of this section is devoted to the description of the transition region in steady 
flow without streamwise pressure gradient (§ 3.1.), because this configuration has attracted a great num- 
ber of more or less fundamental studies. Although less documented, the Influence of positive or negative 
pressure gradients will be discussed in § 3.2.. Recently, the development of conditional sampling techni- 
ques made possible to Investigate the flow behaviour in the presence of an external oscillating flows • 
typical results are presented in § 3.3.. <=      , 

3.1. The transition region with zero pressure gradient 

It has been shown (§ 2.3.) that the breakdown process results in the formation of a turbulent spot 
exhibiting an arrowhead shape when viewed from above (figure 7). In natural conditions, the spots originate 
in a more or less random fashion. Once created, they are swept along with the mean flow, growing laterally 
and axially and finally covering the entire surface. The transition region Is defined as the region where 
the spots grow, overlap and form a turbulent boundary layer. 

Experimentally, the transition region may be studied, either In natural or in artificial condi- 
tions. In the first case, long-time averaged measurements describe the overall evolution of the boundary 
layer characteristics from the laminar to the turbulent state. In the second case, turbulent spots are 
created artificially at fixed positions, at a given frequency ; this enables a more fundamental approach 
of the phenomena, because the random character of the spots development is suppressed. Both aspects will 
be successively reviewed. 

3.1.1. Natural_conditions 

A general sketch of the evolution of the boundary layer parameters during transition was given 
in figure 1. Figure 64 shows more precisely the decrease In the shape factor from the laminar to the tur- 
bulent state as measured in the case A of our experiments /82/. Instantaneous signals recorded near the 
wall are also presented for three stations located respectively at the beginning, in the middle and at the 
end of the transition region. The successive appearance of turbulent spots, characterized by high frequency 
fluctuations, and of more regular laminar zones, is called the Intermittency phenomenon. By definition  the 
intermittency factor y  represents the fraction of the total time that the flow is turbulent : in a laminar 
boundary layer, y = 0 and In a fully turbulent boundary layer, Y = 1- 

Figure 65 presents two instantaneous signals recorded at the same streamwise position but at two 
distances from the wall, one being near the wall and the other in the middle of the boundary layer thick- 
ness. The corresponding power spectra are also given. When y increases, the signature of the spots has at 
first a rectangular shape and then a triangular one. The leading front of the spots is marked by an abrupt 
change m velocity (towards higher velocities at y = 0.4 mm, towards lower velocities at y = 2.1 mm)  but 
the return to laminar flow is characterized by a slow, exponential-like variation of the velocity. No peak 
appears on the spectra. 

a) Mean_veloclty and_"turbulence" profiles 

The change in the velocity profiles during the transition process Is illustrated in figure 66 
where the classical measurements of SCHUBAUER and KLEBANOFF /59/ are reported, with the corresponding ' 
experimental values of Y- If a pltot tube Is moved downstream at a constant height near the wall  it exhi- 
bits a marked increase in the total pressure, corresponding to the increase in the mean velocity! This 
method (the so-called JONES's criterion) allows a rapid determination of the transition region. 

Profiles of the longitudinal fluctuation intensity are shown in figure 67. As the transition re- 
gion is entered, the fluctuation level increases markedly near the wall and reaches values of 15 to 16 per 
cent of the free-stream velocity (about twice the classical values observed in a fully turbulent boundary 
layer). A second local maximum appears in the middle of the transition region. Further downstream the 
intensity of the first maximum decreases and the profiles look like those measured in a turbulent'boundary 
layer. ■' 

The complexity of the transition region comes from the fact that it contains a mixture of two dis- 
tinct flows, one pertaining to the laminar flow and the other pertaining to the turbulent flow. A convenient 
methode for studying separately both flows is the conditional sampling technique. Before presenting some 
results, it is necessary to precise some definitions or notations. 

b) Conditional sampling 

The first task is to determine a detection signal, D(t), which reflects as well as possible the 
considered Intermittency phenomenon. n(t) may be. for Instance, the instantaneous signal to be studied or 
a time derivative of this signal : ARNAL et al. /82/ used IS^U/St^l which is very low in laminar regions 
and very large in turbulent spots due to the presence of high frequency fluctuations. The comparison of 
DCt) with a threshold level makes possible to obtain the intermittency function I(t), which is 0 in laminar 
regions and 1 in turbulent regions, and I(t) enables to compute some interesting quantities • 

y T(t) Intermittency factor 

U^ = I(t) u(t)/Y Turbulent mean velocity 

Uj - (1 - I(t)) u(t)/(l - Y) Laminar mean velocity 

The overbar denotes a time-averaged value. 

u[ (respectively up are the instantaneous fluctuations around U^ (respectively U„). It is obvious that 
relations exist between a quantity and its conditional sampled values inside and outside a turbulent spot 
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yu^ + (1 - Y)Up^ (25) 

u'^ = Yu:' + (1 - Y) u'^ + Yd - Y) (U, - "5,)' (26) 

'2  ,,'2 
"£ 

t 

Similar relations can be obtained for v'^, w'^, u'v', u'"  and so on. U^, 11^^, u^', 

zone averages. 

A second type of conditional sampling results Is given by the so-called ensemble averages.^ Let 
T be the total duration of a spot and t the time measured from the beginning of this spot. At a fixed 
value of t/T , we can calculate an arithmetic average of U(t) over a great number of spots, even if these 
spots are not of equal duration. A statistical picture of a spot is deduced by varying t/T^ from 0 to 1. 
Such an average will be denoted by <V^>.   In the same way, it is possible to obtain ensemble averages for 

<Uj^>, <Vj.>, <Vjj^>, <u^^>, <^l^>  and so on. 

c) Examples_of_results 

Conditional sampling of the instantaneous longitudinal velocity was performed in the zero pres- 
sure gradient case, at the three stations Indicated in figure 64 /82/. Figure 68 shows the distributions 
of Y across the boundary layer. Y varies from a constant maximum value close to the wall to zero towards 
the edge, but it is generally assumed that the Y value near the wall Is the characteristic property of 
importance for the transition region. These maximum values are equal respectively to 0.25, 0.55 and 0.85 
for X = 0.87 m, 0.94 m and 1.07 m. The streamwise evolution of y will be discussed In Chapter II, which' 
deals with the prediction methods of the transition region. 

Figure 69 presents the zone averaged profiles of the laminar and turbulent mean velocities. Accor- 
ding to the observations made on the instantaneous signals, the difference U^. - V^  is positive near the 
wall and becomes negative when the outer edge of the boundary layer is approached. 

Relation (26) indicates that the turbulence Intensity u'^ measured by a hot wire (which integrates 
the square of u' over a long time) is the sum of three terms : a turbulent term, a laminar term (usually 
small) and a third term which accounts for the steps between laminar and turbulent mean velocities. These 
three components are plotted in figure 70 for the station located towards the end of the transition region. 
As expected, the laminar contribution is very low ; on the contrary, the term yd " Y) (U^ - 1'^^)   plays an 
Important role, as it can be seen on the right hand side of the figure, where is plotted the ratio of 
this term to the global "turbulence" u'^. Close to the wall, it represents about 40 per cent of u'  ; it 
vanishes at the point where the laminar and turbulent mean velocities are equal and then presents a second 
maximum, which corresponds to the second maximum observed on the u'  profile. 

Ensemble averages of the turbulent velocity are presented in figure 71 ; they were computed for 
various distances from the wall, in the middle of the transition region. In this plot, we assume that the 
leading interface of the spot appears at the same time for all values of y. This adjustment in time allows 
to draw ensemble averaged instantaneous profiles during the passage of the spot. Four of these profiles 
are shown in figure 72. Prof lie 1 is close to the BLASIUS profile (H = 2.6) ; proflie 2 Is essentially cha- 
racterized by an instantaneous Increase in the boundary layer thickness and by a decrease in the shape 
factor. Profile 3 presents high velocities close to the wall. At the end of the spot (or at the beginning 
of the following laminar region), profile 4 looks like a laminar velocity profile in accelerating flow 

(H == 2). 

3.1.2. Artlficially_created_spots 

Different techniques have been used for initiating turbulent spots in a nominally laminar bound- 

ary layer : 
- electric sparks : MITCHNER /83/, SCHUBAUER-KLEBANOFF /59/, ELDER /84/, WYGNANSKI-SOKOLOV- 

FRIEDMANN /85/ ... 

- small jets of short duration : COLES-BARKER /86/, CANTWELL-COLES-DIMOTAKIS /87/, MATSUI /88/, 

GAD-EL-HAK - BLACKWELDER-RILEY /89/. 

- displacement of a small pin into the boundary layer : COLES-SAVAS /90/ ... 

a) Shape of_the_spots_3_Propagatlon_velocities 

In the following lines, h and b will refer respectively to the height of the spot and to its span ; 
b = 0 corresponds to the vertical plane of symmetry. 

The general shape of a turbulent spot is depicted in figure 73. Figure 73a shows a cross-section 
of the spot through its vertical plane of symmetry. It has a more or less triangular shape, with a slight 
overhang at the leading Interface. The spot is presented in a (t, y) diagram. When presented in the physi- 
cal (x y) coordinates, it would have a more flat shape. In a plan view, the spot presents the well-known 
arrowhead shape, as It can be seen in figure 73b. The leading edge is swept backwards at an angle 6 of 
about 15°. If the maximum span of the spot is plotted as a function of the streamwise distance,^it appears 
that the spot grows linearly with x. The wedge angle was found approximately equal to 10° or 11  /85/. 

Figure 74 is extracted from the work of WYGNANSKI et al.. It shows the spanwlse variation of the 
propagation velocities of the spot. "The propagation velocity U^^, of the trailing edge is 0.5 Ue and seems 
to be Independent of the coordinates x, y and z. The propagation velocity U^^, of the leading edge is 0.89 Ue 
on the plane of symmetry only and decreases slowly with increasing z." These values are in agreement with 
those found by SCHUBAUER-KLEBANOFF, except that the latter authors measured some increase of U^^ with y. 
It is clear, however, that the difference U  - U^^, explains the streamwise spread of the spots. 
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CANTWELL, COLES and DIMOTAKIS /87/ studied the structure of a spot in its plane of symmetry. They 
discovered that the mean flow can be fitted to a conical growth law, that is to say the spot can be described 
by two similarity coordinates, ^ and ri : 

Thus, they could use their experimental data to construct streamlines and particle paths in the 
similarity coordinates. These plots revealed the existence of two vortex structures inside the spot. 

b) Mean velocity measurements 

WYGNANSKI et al. as well as CANTWELL et al. determined the ensemble velocity <U > as a function 
of t for various values of y. Figure 75 shows a qualitative comparison between the results of CANTWELL et 
al. and those obtained in natural conditions. The overall pattern is the same. Moreover, instantaneous pro- 
files measured by WYGNANSKI et al. exhibit an evolution similar of that depicted in figure 72. 

WYGNANSKI et al. measured also the two other components of the mean velocity. Figure 76 represents 
the variations in U and V during the passage of a spot, for y/h = 0.325, and at different spanwise loca- 
tions. The normal velocity V is strongly negative after the leading interface and becomes positive through- 
out the rest of the spot ; the total variation in V is about 0.03 Ug. This histogram may be interpreted as 
the signature of a horseshoe vortex. Measurements of the spanwise velocity indicate that W increases with 
increasing z and reaches a maximum at z/b > 0.7 where W -  0.07 Up. 

c) Structure of the turbulent spots 

By using conditional sampling techniques, COLES and BARKER /86/ found that a turbulent spot is 
essentially a single, large horseshoe vortex structure. WYGNANSKI et al. agreed with this conclusion, but 
later, CANTWELL et al. concluded that there were in fact two vortex structures associated with the average 
spot. In fact, as the spot is ever growing, its structure must evolve in time. 

This was demonstrated by MATSDI /88/ who studied spots development using the hydrogen bubble tech- 
nique. Figure 77 shows successive photographs obtained when a bubble generating wire is placed horizontally 
to the wall. In the first picture, a strong horseshoe vortex and some streamwise vortices are visible. 
While the spot is travelling downstream, new vortices are created, leading to a marked increase in the 
spot size. MATSUI concluded that a spot was composed of many small vortices ; the new vortices generated 
on both sides of the spot explain its lateral growth (cross-contamination process, see below) ; the new 
vortices generated in the rear part of the spot explain its streamwise growth. GAD-EL-HAK et al. /89/ con- 
cluded in the same way ; they stated that a spot is "a random collection of turbulent eddies" and that it 
grows "by adding more eddies to this collection." 

When the spot reaches a certain size, it presents most of the classical turbulent properties. This 
results was found to apply in natural conditions (gaussian distribution of the u' fluctuation /82/) as well 
as in controlled conditions (logarithmic velocity distribution near the wall /85/). 

d) The_growth mechanisms 

Entrainment of the non turbulent fluid may occur through two ways : 

- by entrainment of the external irrotational fluid ; 

- by entrainment of the rotational fluid in the ambient laminar boundary layer. 

The first mechanism is similar to that observed in a fully developed turbulent boundary layer. It 
Involves large scale eddies in a "gulping" process and is responsible for the spread of the spot in planes 
normal to the wall. 

The second mechanism is very different from classical entrainment. It is responsible for the span- 
wise growth of the spot, which is an order of magnitude greater than that normal to the plate : dh/dx = 0.013 
and db/dx -  0.18, where h and b denote characteristic scales of the spot in the y and z directions, respec- 
tively /89/. CHARTERS (1943) was the first to note that the transverse growth rate of a turbulent region 
embedded in a laminar boundary layer is larger than usual entrainment rates. He called this process "trans- 
verse contamination" ; GAD-EL-HAK et al. /89/ call it "growth by destabilization" : the turbulent eddies 
within the approaching spot may induce perturbations into the surrounding unstable laminar boundary layer. 

These fluctuations grow up and break down, forming new turbulence without ever being in contact 
with the older turbulence. The same mechanism explains the spread of a turbulent wedge behind a three- 
dimensional roughness element (§ 2.5.2.). The vertex angle of the wedge (typically 10° to 15°) is comparable 
with the maximum angle subtended by the spot measured from its virtual origin (about 10° /85/). 

e) Interactions_between spots 

Up to now, only individual spots have been considered. So, the problem is to examine if the pre- 
ceding results remain valid when several spots travel downstream together. 

ELDER /84/ investigated the degree of interaction between two identical spots placed side by side. 
It was found that spots grow independently of each other. 

A completely different conclusion was given by COLES and SAVAS /90/ who created large arrays of 
spots : the interaction between neighboring spots cause a strong reduction in the growth rate of each 
spot, in both the spanwise and streamwise directions. The growth rate normal to the wall, however, is 
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almost unaffected. The differences with ELDER's findings may be attributed to a greater number of spots 
and higher values of the Reynolds number. 

Another Important Interaction reported by COLES and SAVAS Is the appearance of distinct new re- 
gions of turbulence to the rear of the original spots and In the gaps between them. This can be explained 
by the "transverse contamination" process. What Is more striking Is that the new turbulent regions grow 
rapidly In size while the original spots decay and disappear. This "edddy transposition" process occurs 
especially when substantial regions of laminar flow exist between the spots. Such a phenomenon needs fur- 
ther investigations. 

3.2. The transition region in pressure gradients 

Due to the lack of results obtained with artificially created spots, all experiments described 
below were carried out in "natural" conditions. 

3.2.1. Effect of a 5lld_P2£iEiY£_PH£251iE£_S-'^5^i£2^ 

Figure 78 compares Instantaneous signals recorded near the wall In cases A and B for the experi- 
ments performed at ONERA/CERT /91/. Case A is the zero pressure gradient case previously described. In 
case B, the flow is subjected to a mild positive pressure gradient and transition starts at a value of the 
shape factor close to 2.8. Both signals were recorded in the middle of the transition region (H - 2), at 
the same dimenslonless distance from the wall (y/S = 0.4). The local free-stream velocities are respecti- 
vely equal to 33 m/s and 28 m/s. 

It appears essentially that intermittency is less apparent when transition occurs in an even 
slight positive pressure gradient. As it has been pointed out in § 2.3., the instability waves exhibit 
large amplitudes, which make the turbulent spots difficult to distinguish. The conditional sampling tech- 
niques are not easy to apply, because the choice of an appropriate detection signal is not obvious. 

3.2.2. Effect_of_a_strong_positlve_pressure_gradlent 

In case F, transit ion starts near the laminar separation point. It is useful to recall that the 
transition location is defined as the location where H begins to decrease. The signals recorded in the 
middle of the transition region (figure 79) do not present any trace of turbulent spots and peaks appear 
on the spectra'at the frequency of the Instability waves 191/. 

The "turbulent" boundary layer developing downstream of the transition region was studied in the 
same case /91/. Although the shape factor is close to 1.4, theu' fluctuations keep a long time the signa- 
ture of the laminar instability waves, especially in the outer part of the boundary layer. 

The disappearance of turbulent spots In the presence of a strong positive pressure gradient was 
investigated in detail by COUSTEIX and PAILHAS /92/ who studied the flow development on an ONERA D profile 
(chord Reynolds number : 3.2 10^). Figure 80 shows the streamwise evolution of the shape factor and some 
examples of IJ' records. The corresponding turbulence profiles are plotted in figure 81. At x/c = 0.875, 
the signal contains essentially instability waves ; the root-mean-square value represents about 12 per 
cent of the free-stream velocity. Further downstream (x/c = 0.925), high frequency fluctuations are super- 
imposed on the primary wave. At the last station, the shape factor has a nearly turbulent value (H = 1.7), 
but the velocity fluctuation remains practically periodic. Measurements performed with two hot wires 
displaced in the spanwise direction indicated that the primary oscillation is two-dimensional, at least up 
to x/c = 0.90. The power spectra reveal that the passage from the "laminar" to the "turbulent" state is 
accomplished by a progressive appearance of harmonics or subharmonics of the primary wave. These observa- 
tions agree with visualizations made in water tunnel (WERLE /93/) in the case of leading edge separation 
bubbles : the instability waves take the form of regular, two-dimensional rollers, which loose progressi- 
vely their individuality due to the turbulent diffusion process. Peak-valley systems, spikes or spots are 
never observed. Other experiments /44/ led to the same conclusions. 

3.2.3. Effect of_a_25S5tlve_pressure_gradient 

To our knowledge, detailed studies of the transition region have never been made, at least for 
low free-stream turbulence levels. Some Information is available at higher values of T. TURNER /45/ deter- 
mined the variation of the heat transfer coefficient along a cooled turbine blade ; BLAIR and WERLE /46/ 
measured the mean velocity and temperature profile along a slightly heated wall. In such cases, transition 
starts at low Reynolds numbers, but it sometimes extends over large downstream distances : TURNER studied 
a configuration (T = 2 10"^) in which transition occurs at x - 1.5 cm but is not terminated at the blade 
trailing edge (x = 7 cm). Such experiments provide good tests for practical calculation methods (see Chap- 
ter II). 

3.3. The transition region in oscillating external flow 

It was already noted (§ 2.4.) that the turbulent patches appeared as quasi two-dimensional ribbons 
or belts, extending across the flat plate, provided that the relative amplitude N be large enough (say, N 
of the order of 0.1). 

Let us return now to figure 41, which shows the space-time spreading of wave packets and turbulent 
regions for a periodic transition. The slopes of the curves marking the limits of the turbulent regions 
give the propagation velocities of the patches. The average values of OBREMSKI-FEJER /48/ are 0.88 Ug and 
0.51 UQ for the leading Interface and trailing interface speeds, respectively. COUSTEIX et al. /49/ found 
similar values (0.89 UQ and 0.48 U^). The corresponding propagation speeds of the three-dimensional spots 
were 0.89 Ug and 0.50 Ug on the plane of symmetry (WYGNANSKI et al., /84/, see § 3.1.2.). It appears that 
the streamwise turbulence spread presents striking similarities for steady and unsteady boundary layers. 
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other similarities become more apparent when ensemble velocities are computed. Figure 82 presents 
ensemble averages of the streamwise velocity at a station where the intermittency factor is close to 0.5 
(COnSTEIX et al. /49/). The upper curve represents the evolution in time of the free-stream velocity. As 
in steady flow, the signature of the turbulent patches manifests itself close to the wall by rectangular 
velocity steps. Towards the boundary layer edge, the turbulent velocity becomes lower than the laminar one. 
Figure 83 shows instantaneous velocity and turbulence profiles obtained at the same station at different 
times during a cycle. As the turbulent region is entered, the increase in the boundary layer thickness is 
more pronounced than in steady flow (figure 73), but the overall evolution is the same. On the other side, 
turbulence profiles measured inside the turbulent patches are not far from those measured in a steady tur- 
bulent boundary layer. 
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Fig. 1 - Boundary layer development 

Fig. 2 - Records showing laminar boundary layer 
oscillations /I/ - Distance from surface 
0.023 in. Ue = 53 ft/sec. 
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Fig. 3 - Stability diagram for the BLASIUS flow - a) : (lo , R61) plane - b) : (F, R61) plane, in parallel 
and non parallel /5/ theories ; • ■ o n  : experimental /I/ /7/ neutral points 
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Fig. 4 - Comparison of theoretical /2/ and experimental /7/ pertur- 
bation profiles, for F = 82 10"^ and two values of R61 
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Distance from surface : 0.042 in. 

Fig. 9 - Intensity of u'-fluctuation at peak and valley posi- 
tions /U/ - • : z = - 0.2 in. (peak) - 
A : z = - 0.75 in. (valley). Uj/v = 3.1 10"^ ft"' 
f = 145 Hz. XQ : reference position, 3 in. down- 
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Fig. 11 - Contours of approximate spanwise vorti- 
city at peak position /12/ 

(b) 

Fig. 10 - Mean velocity distributions at peak (P) and valley 
(V), at the four stations indicated in figure 9 /ll/ 

Fig. 12 - Peak-valley patterns - a) Ordered 
peak-valley structure, K-type 
b) Staggered peak-valley structure, 
C-type or H-type 
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Fig. Contours of approximate spanwise vortlcity 
at peak position /12/ : one spike stage (a) 
and double spike stage (b) 

Fig. 14 - Hydrogen bubbles visualization /20/ 
showing secondary Instability of BLASITIS 
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Fig. 15 - Effect of free-stream turbulence on tran- 
sition Reynolds number : 0<T<3 10~ 

Fig. 16 - Effect of free-stream turbulence on transition 
Reynolds number for low turbulence Intensities 
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Fig.   17  - Experimental  set-up  and  free-stream  turbulence  spec- 
trum  /28/   -  The  external velocity distribution  is 
shown  in  figure  30   (case A) 
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for various streamwlse stations. The shape 
factor begins to decrease at x =: 0.84 m 

Fig. 20 - Amplitude profiles corresponding to various 
frequencies, at x = 0.66 m. f = 600 Hz is 
the central frequency of TOLLMIEN-SCHLICHTING 
waves 
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Fig. 21 - Free-stream turbulence intensity generated by grid 1 
and free-stream turbulence spectrum measured at x = 0.66 m. 
The external velocity distribution is shown in figure 30 
(case A with U^^j = 28 m/s) /29/ 
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Fig- 25 - Growth of single frequency waves 
tlon, f = 500 Hz and Ue = 29 m/s. 
of F = 2Trfv/Ue^= 56 10"^ 
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linear stability theory result for the corresponding value 
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Fig. 28 - Effect of pressure gradient on laminar 
boundary layer oscillations /I/. Distance 
from surface : 0.021 In. Reference velo- 
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Fig. 29 - Calculation of the critical Reynolds number. 
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Fig. 32 - Amplitude profiles for f = 360 Hz In case D, 

X = 0.40 m : • experiments /39/ — linear sta- 
bility results, see reference /ll/ In 
Chapter II 
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Fig. 34 - Momentum-thickness Reynolds number and 
shape factor at the transition onset 
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Fig. 33 - Streamwise evolution of the shape factor 
• experiments /39/ /40/ — • — laminar 
calculation, with theoretical separation 
point 
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Fig. 35 - LC 100 D profile : velocity distributions in the leading edge region /43/, /44/. 
s is the curvilinear distance from stagnation point 
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Fig. 36 - LC 100 D profile : momentum thickness at 
x/c = 0.75 (a = 7°30) /43/, /44/ 
  : calculation with transition at 
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Fig. 37 - Enlarged leading edge : evolution of 
the shape factor /43/, /44/ 
• : hot wire - A laser anemometry 
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Fig. 38 - Experimental evolutions of the shape fac- 
tor and of the momentum thickness in acce- 
lerating flows /46/ /47/ 
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Fig. 40 - Photographs illustrating the initiation 
and development of a turbulent burst in 
an oscillating boundary layer /48/ 

Trailing edge 
at large N 

^CTEIU„ = 0-55 

10 20 30 40 50 

Distance from leading edge, x (in.) 

Fig. 41 - Space-time representation of the transi- 
tion process /48/ 
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Fig, 42 - Theoretical development of a wave packet, 
for N = 0.15 /51/ 
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Fig. 43 - Transition Reynolds number as a function 
of the amplitude parameter /48/. 

Fig. 44 - Example of shape factor evolution downstream 
of a cylindrical rod /53/ 

Fig. 45 - Ratio of transition Reynolds number with two-dimensional 
roughness element to that for smooth plate /55/ 
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Fig. 47 - Representation of flow past a cylindrical rough- 
ness element on a flat plate /58/ 
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Fig. 48 - Example of carborundum band : plan view photograph and evolution of the 

roughness height at a given x /50/ 
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Fig. 49 - Mean velocity and turbulence profiles upstream and downstream of a carborundum band 
located at Xj^ = 0.148 m /60/ 
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Fig. 50 - Boundary layer tripping with carborundum band : o : transition downstream 
of the tripping device  • : transition "fixed" on the tripping device /60/ 
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Fig. 51 - Streamwlse evolution of the momentum thickness for various roughness 
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Fig. 52 - Experimental results obtained by TOTLAND /62/ 
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Fig. 54 - Shape factor variation for single 
suction-strip configuration /67/ : 
• without suction A with suction 
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Fig. 53 - Influence of pressure gradient and distributed 
roughness on transition Reynolds number /53/. 
He, PQ and q denote velocity, static pressure 
and dynamic pressure at the test section entrance 
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Fig. 55 - Evolution of the disturbance amplitude /67/ : 
• experiments without suction  w experiments 
with suction   theory 
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Fig. 56 - Effect of transverse curvature on 

boundary layer profile /69/ 
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Fig. 57 - Comparison of neutral curves for BLASIUS boundary layer and axlsym- 
metrlc boundary layer with U^a/v =71 122 /69/ 
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Fig. 58 - GORTLER vortices in flow along a concave 
wall 

Fig. 60 - Curves of constant growth rate for the 
BLASIUS flow along a concave wall llll. 
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Fig. 62 - Computed /76/ and experimental /80/ 
profiles of the disturbance velocity 
components 

Fig. 59 - Neutral curves obtained from different mo- 
dels or different computation procedures 
of the GORTLER instability /74/. 1 : GORTLER : 
2,3,5 : HAMMERLIN ; 4 : SMITH ; 6 : SCHULTZ- 
GRONOW and BEHBAHANI ; 7,8 : KAHAWITA and 
MERONEY ; 9 : FLORYAN and SARIC 

Fig. 61 - Development of instabilities along a concave 
wall : a) primary instability - b) second- 
order instability - c) third-order instabi- 
lity (the steady basic flow is suppressed) /79/ 
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Fig. 63 - Effect of surface curvature on momentum-thickness Reynolds number and on GORTLER 
number at the transition location /70/ /71/ 
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Fig. 64 - Shape factor evolution and typical records in the transition region /82/ 
Flat plate case, Ue = 33 m/s 

n,4 

n? \ 

0 
vj 

0,1 

0 
0,4      qs      1,2 0      0.4      0,8     12 

F(KHz) 

Fig. 65 - Simultaneous signals recorded in the middle of the transition region 
Flat plate case, x = 0.94 m 



2-43 

X(ft) y 
®  5.25 0 

@  5.75 0.16 

(3)  6.25 0.50 

@  6.75 0.82 

t 

u      u      u      u      u        _^u/Ue 
Fig. 66 - Mean velocity profiles through transition region /59/. Ue = 80 ft/s. T = 3 10~ 

0.10 

0.05 

u'/U, 

rft 

0.15 

0.10 

0.05 

V    6 0.32 

.    6.25 0.50 
n    6.50 0.70 

•7» • 

7'" 

7 

0.15 

0.10 

0.05 

7     6.75   0.82 
.  7.50   0.98 

8     1 

□ V 7 

7   .   o 
V    . 

0    Q2 0    0.2   OM 0   0.2   0.A   0.6 y(in) 

Fig. 67 - Profiles of u'/Ue through transition region /59/. Ue = 80 ft/s. T = 3 10" 

-^ 
X=l,07 m 
/ 

•^\ 

■^ 

^^ 

• 
^^^^      0,94 

^ • 

^v • *.^ 0,87 

» 

Y(mm) 

Fig. 68 - Intermlttency factor profiles at three 
streamwlse positions /82/ 

J:|SjU, 

^ 
^ 

A 

Y(mm) 5 

*=■ a *- 

X . 0,94 m 

Y(mm) 

# 

? X = 1,07 m 

o A  V Ut/Ue 

• A  ▼ Ug/U, 

Fig. 69 - Laminar and turbulent mean velocity 
profiles /82/ 



2-44 

i  (l-7lu-J'U^ 

T(1 -7)(U, - u^)' 

iko 

■^ 

\' 
•1^ 

Fig. 70 - The three components of the longitudinal turbulence Inten- 
sity, X = 1.07 m /82/ 
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Fig. 72 - Ensemble averaged instantaneous profiles during 
the passage of a turbulent spot, x = 0.94 m 
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Fig. 74 - Spanwise variation of the propagation velocities 
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Fig. 73 - Shape of a turbulent spot, after /85/ : a) elevation view ; b) plan view. 
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Fig. 77 - Plan view of growth of a turbulent spot, 2 frames/s /88/ 
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Fig. 78 - Instantaneous signals recorded near the wall in cases A (dP/dx = 0) and 

B (mild positive pressure gradient) /91/ 
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Fig. 79 - Instantaneous signals recorded in case F (strong positive 
pressure gradient) /91/ 
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Fig. 80 - Shape factor evolution and typical records in a transition occuring at laminar 
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transitional region of an osclj^lating boundary layer 
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CHAPTER II 

TRANSITION PREDICTION 

AT LOW SPEED 

1 - INTRODUCTION 

The problem considered here is how to predict the position and the extent of the transition in 
a two-dimensional, incompressible flow developing under the influence of various factors. This prediction 
is all the more difficult as the fundamental mechanisms of the transition process are far from being fully 
understood. However, advanced design of aerodynamic vehicles or turbomachinery airfoils needs practical 
procedures combining acceptable engineering accuracy with simplicity and speed. Most of the methods des- 
cribed in this paper do not claim to represent the intricate physics of the transition process : they only 
constitute possible short term answers to practical problems. 

The first difficulty is to predict the location of the transition onset. For transitions trig- 
gered by small amplitude disturbances, the linear stability theory provides us with a useful guideline, 
even if the non linear phenomena, occuring just before breakdown, are disregarded. But, due to the com- 
plexity of the governing equations, simpler empirical correlations have been often used. In the last ten 
or twenty years, the advent of high speed computers made it possible to solve sets of partial differential 
equations in which empirical information is able to lead to a "numerical transition". As it will be seen 
later on, these various techniques are not really antagonist, but rather complementary. 

The second problem concerns the boundary layer development from the laminar to the turbulent 
state. The most obvious way to compute it is to assume that transition is a point-like phenomenon and 
to overlap the laminar and fully turbulent parameters at this point. Although this crude method may be 
substantiated in some cases, it does not apply to other configurations : on the pressure side of a tur- 
bine blade, for instance, TURNER found that transition extends over 70 per cent of the chord. So, practi- 
cal methods able to describe the transition region have been developed ; they allow a smooth junction with 
the more classical turbulent computations and will be discussed at some length. 

2 - CALCULATION METHODS BASED ON STABILITY CALCULATIONS 

2.1.  Stability diagrams and envelope curves 

Let us recall that the small, two-dimensional disturbances introduced in the laminar boundary 
layer are related to a stream function ij; ; using the spatial theory, its expression is : 

c  i(a^x - (jjt) 
*(x, y, t) =  ^(y)<; (1) 

^, a., a and M represent respectively an amplitude function, an amplification (or damping) 
coefficient, a wave number and a circular frequency. 

Introducing u' = 3ijj/3x and v' = - Sif'/Sx into the continuity and linearized NAVIER-STOKES equa- 
tions, one can obtain the ORR-SOMMERFELD equation : 

^ IV 2a2 ^" + a'*^= iR [(aU - oj) ( ^" - a^ ^ ) - aV'^^ (2) 

with a = a + ia.. The Reynolds number R is based on the reference length and on the reference velocity 
which made all quantities dimensionless. Equation (2) plus boundary conditions constitute an eigenvalue 
problem which has only solutions if a secular relation of the form : 

F(a , a., 0), R) = 0 (3) 
r  1 

is satisfied. For a given mean flow profile U(y), the results of numerical computations can be represented 
in a (u, R) diagram ; the neutral curve (a. = 0) separates the region of stable from that of unstable 
disturbances (figure 1). The critical Reynolds number is defined as the Reynolds number below which all 
waves are damped. 

The total amplification rate of a single frequency is defined as : 

A j     a.dx = exp - j       a. 
dx 
dR 

dR (4) 

A is the wave amplitude and the index o refers to the streamwise position where the wave becomes 
unstable. Figure 2 shows total amplification curves corresponding to various frequencies, obtained for the 
BLASIUS profile. The dashed line represents the envelope of these curves, which will be called n : 

Max (-7—),   at a given x or R 
0)  AQ 

It is obvious that n = 0 for R 

x dUg 
Ue dx 

2m dUe 
dx 

,  H (shape factor) 

(5) 

The same type of calculation can be performed for the other similar velocity profiles of the 
FALKNER-SKAN family. Each profile is characterized by a lot of dimensionless parameters such as : 

For several values of H, the corresponding envelope curves are plotted on figure 3. The stabili- 
zing effect of a negative pressure gradient (H < 2.59) and the destabilizing effect of a positive pressure 
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gradient (H > 2.59) can be clearly pointed out : as H increases, the critical Reynolds number decreases 
and the slope dn/dR61 increases. 

2.2.  LIEPMAIffl's method 

LIEPMANN hi  was the first who attempted to use the linear stability results for practical ap- 
plications. He hypothesized that breakdown to turbulence occured when the Reynolds shear stress x = - pu^ 
due to unstable waves, became equal to the laminar wall shear stress T„ : 

-L = -L 2 

A     2 

o mj 

-u'v' v' 
L   Ue^    J ^ u'       v' 

] = 1 
IX 

u' 
= F- [K "'^ ] (6) 

'-f 

At transition, (-^)    = -^- [k A^ C-^-)" 1=1 , (7) 
T j max   n.^nA-l '■'•' 

The theory provides the values of K and (-7—)   , but the initial amplitude A  remains unknown. 
AQ msx o 

As it will be seen later, VAN DRIEST and BLUMER developed a simple prediction method based on LIEPMANN's 
idea. 

2.3.  e , e , e' and e methods 

These methods have been developed independently by SMITH and GAMBERONI /2/ and by VAN INGEN /3/. 
In the general case where the flow is not of a constant 6 -type, these authors calculated at first the 
laminar boundary layer development ; the second step was to use the stability charts established by PRETSCH 
for self-similar velocity profiles ; the envelope curve was obtained by computing the growth of waves of 
different frequencies. SMITH and GAMBERONI compared stability calculations with measured transition points 
and transition was found to occur when n = 9. This means that transition occurs when the most unstable 
frequency is amplified by a factor e^. The same result was obtained by VAN INGEN, but with the exponential 
factor equal to 7 or 8. 

More recently, WAZZAN, OKAMURA and SMITH /4/ and JAFFE, OKAMURA and SMITH /5/ improved the ori- 
ginal approximate calculation technique, and VAN INGEN extended the method to cases including suction or 
separation bubbles /6/. As pointed out by MACK 111,   "the method remains essentially as originally deve- 
loped, and the key to success still lies in a judicious choice of the value of the exponential factor." 

Therefore, it seems obvious that a transition criterion should be based on the disturbance ampli- 
tude and not on its amplification ratio. The success of the e^ method is certainly due to the fact that the 
experimental data were obtained in wind tunnels where the disturbance environment was similar ; in parti- 
cular, the free-stream turbulence level T was rather low, let say T = 0.1 10"^. For higher values of T, the 
transition Reynolds number decreases rapidly and the e' method no longer applies. MACK 111  suggests an 
empirical relation between T and the value of n at the transition location : 

n^ = - 8.43 - 2.4 £n T (8) 

This relation has been established to fit the experimental results collected by DRYDEN for the 
flat plate case /8/. For T < 10"^^ sound disturbances may become the factor controlling transition rather 
than turbulence and application of (6) may give poor results. If T = 2.98 lO'^, n = 0, which means that 
transition occurs at the critical Reynolds number. If one assumes that the amplitude A reaches a constant 
value at transition, MACK's relation indicates that the initial amplitude A varies as T^'"* 

An example of application of the so-called e method is given on figure 4. It is relative to an 
experimental case studied at ONERA/CERT, in which the longitudinal pressure gradient is positive : at the 
transition location, the shape factor is equal to 3 (case C in the experiments reported in /9/, /10/). The 
figure shows the total amplification curves for five different frequencies. By introducing the experimen- 
tal value of T (T - 0.15 10~2) into relation (8), one obtains n = 7.2, which corresponds on the envelope 
curve to x^ = 0.58 m. This value is in close agreement with the experimental transition location. Similar 
comparisons have been made for other cases and are reported in /1iy. It appears that MACK's relation can 
be extended to adverse pressure gradients. 

2.4.  Amplitude method 

MACK 111  has proposed a more ambitious approach by considering the total perturbation energy Ad^. 
The main elements of this theory can be summarized as follows : 

. Ad^ results from the integration of individual energy densities A^ = (-—)  A'  over the range 
o   ° 

of the unstable frequencies taken in the most unstable directions. 

A . For a given frequency and a given wave orientation, the ratio -— is given by the classic re- 
, . o 

suits of the linear stability theory and the initial amplitude AQ is related to the free-stream turbulence 
component having the same frequency and the same orientation ; there is no cross spectral transfer of 
energy. 

. The free-stream turbulence is characterized by its intensity T and a length scale A. As a 
result of some assumptions and simplifications, Ad^ is  found to be a function of T and RA = UgA/v. 

. Transition occurs when Ad = K Ug. MACK adopted the critical value K = 0.04 in order to fit the 
experimental flat plate data. 

A typical result of the amplitude method is that it gives a decrease of 16 % in Rx^n at T = 0.02 10"^ 
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as RA increases from 1 lO'* to 8 lO"*. Unfortunately, the validity of this method cannot be exactly checked, 
due to the lack of experimental information. 

3 - TRANSITION CRITERIA 

In the following lines, the word criterion can be interpreted as a more or less empirical cor- 
relation between boundary layer parameters at the transition onset. These parameters may be some charac- 
teristic Reynolds number or a similarity variable, among others. The transition criteria are often used 
for practical applications, because they are easily introduced in engineering prediction methods such as 
integral methods. Although the fundamental mechanisms of the transition process do not appear as clearly 
as in the stability calculations, they provide a fairly acceptable compromise between accuracy and sim- 
plicity. 

Historically, the first proposed criteria took only into account the pressure gradient effects ; 
more recently, it was possible to introduce in addition the influence of the free-stream turbulence. Both 
aspects will be examined successively. 

3.1.  Pressure gradient effects 

In these criteria, the free-stream turbulence level is implicitly assumed to be low. 

a) MICHEL /12/, 1951 - For two-dimensional flows over airfoils, MICHEL correlated the values of 
two Reynolds numbers at transition, R9 and Rx. This criterion is plotted on figure 5. The mean curve may 
be fitted by the following expression : 

R9^ = 1.535 Rx^°-^^'^ (9) 

For the BLASIUS solution, this relation gives R6 = 1 180, which is close to the experimental 
value found by SCHUBAUER-SKRAMSTAD /13/. 

b) GRANVILLE /14/, 1953 - GRANVILLE developed a correlation which takes into account two impor- 
tant parameters, namely the stability properties and the flow history : 

. The stability of the boundary layer is characterized by the difference in momentum-thickness 
Reynolds numbers from the neutral stability point to the transition location. 

. As the amplification of disturbances depends on the cumulative effect of pressure gradient, 
an averaged POHLHAUSEN parameter is introduced : 

^2 r ^ f^ dx 
Jyi V  dx 

This criterion gives a right correlation with available data for transition on airfoils in low 
turbulence wind tunnels and on wings in flight tests (figure 6). 

c) CRABTREE /15/, 1957 - This criterion correlates transition data by using two simple parameters ; 
the momentum-thickness Reynolds number and the local POHLHAUSEN parameter at the transition point (figure 7), 

d) Transition criteria in separation bubbles - It was shown (Chapter I) that, if the chord 
Reynolds number of a given airfoil is small, laminar separation may occur, followed generally by a tran- 
sitional bubble. An accurate prediction of the transition point is needed in order to compute the down- 
stream effects of the bubble : a delayed transition would cause the bubble not to reattach and the calcula- 
tion would fail ; on the other hand, with a too early transition, the increase in momentum thickness would 
be too small and the downstream turbulent calculation would not be significant. In a general way, problems 
involving separation bubbles are not treated with criteria such as those described above, but rather with 
specific criteria. 

A transition criterion in separation bubbles was established by HORTON /16/ and modified by 
VINCENT DE PAUL /17/. Once the laminar separation abscissa Xg has been found, it is assumed that there is 
a sudden transition at a point x,],, defined as follows : 

x^ - x^ = L,  with j-  = ^ (10) 

where the subscript s corresponds to the separation point. K is a constant for HORTON (K = 4 lO'*) and a 
function of RSg for VINCENT DE PAUL. 

Another criterion is used by KWON and PLETCHER /18/, where the onset of transition is given by : 

Rx^ = 1.059 R9 + 47 720 
T s 

3.2.  Free-stream turbulence effects with zero pressure gradient 

The free-stream turbulence is characterized by its root-mean-square value, defined as : 

( u' ), 
Up 

(/u'2 + v'2 + w'n„//3  U, 

By reviewing the literature, HALL and GIBBINGS /19/, 1970, concluded that transition occurs when 
R9 reaches a value depending on T and given by the empirical expression : 

RB^ = 190 + exp (6.88 - 103 T) (11) 
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As concerns the transition length, HALL and GIBBINGS proposed : 

Re„ = 320 + exp (7.70 - 44.75 T) (12) 

where R9  is the momentum-thickness Reynolds number at the end of the transition region (figure 8). 

3.3.  Combined effects of pressure gradient and free-stream turbulence 

a) VAN DRIEST and BLUMER /20/, 1963 - As the previous ones, the criterion proposed by VAN DRIEST 
and BLUMER is based on experimental data ; nevertheless, it includes theoretical elements. The authors 
consider the ratio of the local "turbulent" stress pZ'   OU/3y) to the local viscous stress )jOU/3y). As Z 
is proportional to y, this ratio is proportional to y^/v . 3U/3y. At transition, it is assumed that : 

MaxC— ■^—)     = constant = Tr (13) 
.       y  V  3y ^ 

v^ 3U . . . ... -—^^-  is called the vorticity Reynolds number. For the BLASIUS profile, the maximum of this V 3y f > 

quantity occurs at y/6 = 0.6 ; it is approximately the altitude where the breakdown to turbulence has 
been observed in laboratory experiments. The FALKNER-SKAN similarity profiles and the TAYLOR's relation 
between pressure fluctuations and velocity fluctuations are then used and Tr is expressed by : 

+ BA + CR6 (T)2 (14) 
Tr 
R6 

re  A = =   51 
V 

dUe 
dx 

and R6^  = ■<¥', 
Tr, A, B and C are adjusted to fit the experimental data : 

Tr = 9 860 B = - 0.0485 
(15) 

A = 1 C =  3.36 

Other expressions of this criterion can be deduced from the wedge-flow solutions, where the 
m a j 

external velocity is proportional to x , where m is a constant ; the most useful correlation is expressed 
under the form : 

f(A„, T) (16) T    ^2 

Relation (16) is presented on figure 9. 

T 

b) DUNHAM /21/, 1972 - Experiments dealing with combined effects of pressure gradient and free- 
stream turbulence are rather scarce for non zero pressure gradient. However, DUNHAM attempted to correlate 
the few existing results and proposed : 

Re^ = [0.27 + 0.73 exp (- 80 T)] [550 + 680 (1 + 100 T - 21 A^ )~^]      (17) 

A family of curves given by this relation is shown in figure 10. For T = 0 and A = 0, the value 
of R6  is finite and equal to 1 230. 

c) SEYB /22/, 1972 - SEYB proposed an empirical correlation which may be expressed as follows : 

1 OOP   ,    .  0.09 + A?  /-^^ 
^'^T " 1.2 + 70 T ^ ^° ^0.0106 + 3.6 T'' "-^^^ 

This relation is valid for 0.1 10"^ < T < 4 10"^. if T falls outside this range, RG  is assumed 
to be equal to the appropriate limit. FOBtEST /23/ used relation (18) with some modifications. 

d) ARNAL, HABIBALLAH and DELCOURT /24/, 1979 - The aim_was to obtain a criterion involving the 
same parameters as those introduced by GRANVILLE, R6  - RO  and A2 . In addition, the free-stream turbu- 
lence level T was taken into account. At first, the proposed correlation was established for similarity 
flows (FALKNER-SKAN family profiles) and then extended to more general configurations. 

The criterion starts with the envelope curves of amplitude ratio computed for the FALKNER-SKAN 
profiles (figure 3). Each curve is characterized by a similarity parameter, such as Q,,   H or A.. The 
FOHLHAUSEN parameter A„ = 9Vv . dUg/dx will be considered in the following developments. The curves plotted 
on figure 3 give a relation such as : 

n = («,n -^)   = n {R&,   or R6, A„) (19) 
A.^  max        '2 

As the critical Reynolds number is itself a function of A„, equation (19) can be written : 

n = n (R6 - RO^^, A^) ' (20) 

The value of n at the transition location is given by MACK's relation : 

n^ = - 8.43 - 2.4 Jin T (21) 

A combination of (20) and (21) allows to obtain a correlation of the form : 

Re„ - Re_ (AJ = f (A,, T) (22) 
T    cr  2' '2 T 
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Curves corresponding to various values of T are plotted on figure 11. A- has been replaced by 
A„, which will be the parameter of interest in practical applications. It can be observed that the proposed 
criterion Coincides practically with the GRANVILLE's one for T = 0.05 10"^ to 0.1 10"^. An analytical 
expression of the criterion is : 

Re„ - Re  = - 206 exp (25.7 A„ ) |j,n(16.8 T) - 2.77 A„ ] (23) 
i    cr ^T ^T 'T 

R9   is calculated by one of the methods described in Chapter I. 

d) Transition criteria in separation bubbles - ROBERTS /25/ extended HORTON's criterion (equa- 
tion (10)) by assuming that K is a function of T. 

Recent calculations were carried out at ONERA/CERT by GLEYZES, COUSTEIX and BONNET /26/ who used 
a method originally developed by HABIBALLAH / 11/ for attached boundary layers. In this method, it is ob- 
served that the envelope curves n(R9) obtained for similarity profiles can be fitted by straight lines 
(figure 3) : 

& (H, Re) = S(H) 

The total amplification is then calculated step by step by the relation : 
f Re 

n = jj^g  S(H) dR6 
cr 

GLEYZES et al. obtained values of S for separated boundary layers (H > 4.03) and assumed that 
transition occurs when n reaches a critical value given by MACK's relation (equation (21)). 

3.4.  Remarks and applications 

a) Among all the different criteria which take into account the free-stream turbulence level, 
the criterion proposed by ARNAL et al. gives infinite values of RO for T = 0. On the contrary, the other 
criteria (VAN DRIEST-BLUMER, DUNHAM, SEYB, HALL-GIBBINGS) give finite values, which are generally adjusted 
on the SCHUBAUER-SKRAMSTAD experiments for the zero pressure gradient case. 

b) Figure 12 presents a comparison between criteria at low values of T, in a (Re , A ) diagram. 
In the analytical expressions of the VAN DRIEST-BLUMER and DUNHAM criteria, T is set equal to ^ 0. It is 
always possible to transform any criterion in a criterion involving these variables by the use of simila- 
rity relations : for example, MICHEL's correlation R6„ = Re_(Rx ) is converted into a Re„ = Re_(A ) cor- 

i     1   i IT  Z-T 
relation through the similarity parameter Re//Rx = f(A2). The results corresponding to the e method, when 
it is applied to the similarity profiles, are also plotted on that figure. It appears that large discre- 
pancies exist, especially in positive pressure gradients : for A„ = - 0.02 (H =2.73), the criteria pro- 
posed by MICHEL and by CRABTREE give respectively ROrj, = 550 and  1 150. For real and non similarity condi- 
tions, however, the differences may be reduced if the criteria are employed in their original formulation. 
But when the similarity conditions are approached, they will give more and more important discrepancies. 

c) An application of DUNHAM's criterion to the experiments carried out at ONERA/CERT is presented 
in figure 13. The laminar values of RO at the beginning of the transition region are plotted as function 
of the local POHLHAUSEN's parameter. It appears that the experimental value of T (0.15 10~^) does not cor- 
relate the experimental data. In the case B, for example, the criterion predicts x = 0.8 m instead of the 
experimental value x = 0.5 m. For the cases D, E and F, it does not give any transition point up to the 
theoretical laminar separation. In a general manner, the use of the local POHLHAUSEN's parameter can lead 
to large errors at low values of T. The use of a mean parameter seems to be more appropriate. 

d) Figure 14 shows the velocity distributions corresponding to two experimental cases : the case F 
of the ONERA/CERT experiments and a case studied by R. MICHEL on an airfoil /27/. In both experiments, 
transition occurs at the same value of A2, but the momentum-thickness Reynolds numbers are very different. 
However, calculations, indicate that the critical Reynolds numbers are likewise very different, so that the 
difference RS - R6   is nearly the same. This example justifies the use of this parameter in practical 
criteria, at least for low free-stream turbulence levels. 

e) When T becomes large (say T > 0.5 or 1 10~^), the linear stability process is often bypassed. 
An example of such a phenomenon was studied by BLAIR and WERLE /28/, /29/, who carried out experiments on 
accelerating flows subject to high free-stream turbulence levels ; the analysis of experimental results 
revealed that the Reynolds number at the transition onset was lower than the critical Reynolds number 
(see Chapter I). It is obvious that the criterion developed by ARNAL et al. /23/ (extension of GRANVILLE's 
criterion) is unable to predict such a transition process, because Re must be greater than RO   : in nega- 
tive pressure gradients, the critical Reynolds number increases rapidly, as well as the difference RO  - R9 
(figure 11). On the contrary, the experimental values of RO measured at high free-stream turbulence "levels 
are not far from those obtained in zero pressure gradient  for the same value of T. This is precisely the 
trend which is reflected in the criteria proposed by VAN DRIEST-BLUMER, DUNHAM or SEYB. In figure 15, these 
criteria are applied to a case studied by BLAIR-WERLE ; the experimental values of T and x are respecti- 
vely 10~^ and 0.8 m. VAN DRIEST-BLUMER criterion gives x - 0.6 m, whereas the two other criteria do not 
indicate any transition. Due to the slow boundary layer thickening, small differences in RO can lead to 
large discrepancies in x, so that these criteria are generally not very accurate in negative pressure gra- 
dients. 

f) The influence of parameters other than T and the pressure gradient is rarely taken into account 
in empirical criteria. 

Concerning the wall curvature effects, FOREST /22/ correlated the few existing experimental results 
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by the relation 

where G6 = 

Ge„ 9 exp (- 17.3 T) 

is the GORTLER number and — the wall curvature. 
R 

Wall suction (or blowing) results in a decrease (or an increase) of the shape factor. As pointed 
out by WAZZAN et al. /30/, criteria using POHLHAUSEN's parameter are not adequate : in the zero pressure 
gradient case, for example, suction will make H decrease and R9„ increase, but A will remain equal to 
zero. A possible solution is to use the shape factor as a new parameter instead  of A„. 

Wall roughness effects are difficult to introduce in practical calculation methods. The experi- 
mental results described in Chapter I may be considered as empirical rules for boundary layer tripping 
purposes. 

4 - TRANSITION REGION CALCULATIONS BASED ON INTERMITTENCY METHODS 

Let us assume that the transition onset is known. A second objective is to compute the transi- 
tion region itself, the extent of which may be as long as the laminar region which precedes it. An impor- 
tant parameter characterizing the transitional boundary layer is the intermittency factor y,   which repre- 
sents  the fraction of the total time that the flow is turbulent.  The numerical models we will describe 
in this section are based on the so-called "intermittency method", in which laminar and turbulent quanti- 
ties are weighted by y.   In fact, experiments show that for strong positive pressure gradients, transition 
process no more involves turbulent spots and intermittency phenomenon (Chapter I). However, numerical 
results indicate that the use of an intermittency function can provide satisfactory results. Thus, the 
first task is to describe the streamwise evolution of the intermittency factor. Computations based on 
transport equations models  do not need the knowledge of y and will be presented in section 5. 

4.1.  Evolution of the intermittency factor 

SCHUBAUER and KLEBANOFF /31/ measured the streamwise evolution of y  for various flat plate ex- 
periments. The length of the transition region varied from one case to another, but the intermittency 
distribution conserved the shape of the Gaussian integral curve. The standard deviation a was determined 
for e£ch experimen_t, and all data collapsed onto a single curve when y  was plotted as a function of 
(x - x)/a , where x = X(Y = 0.5) (figure 16). However, this result does not constitute a calculation me- 
thod for determining y,   because the values of x and a must be known. 

DHAWAN and NARASIMHA /32/ proposed another universal distribution of intermittency for flat 
plate experiments : 

Y = 1 - exp I]; A (x - x^)'/X\\ 

with A = x (Y = 0.75) - x (y = 0.25) 

(24) 

A compatibility relation implies that A = (/£n4 - An3/4)2 = 0.411. If, for a given experiment, 
x^ is known, the curve Y(X) cannot be determined unless X is also known. For this, the authors correlated 
experimental data by the following relation : 

UeA ,U„XT eA ^ 3/"ex.,,. 

V        V (25) 

Under the assumption that turbulent spots appear randomly with a source rate density g, EMMONS 
/33/ has shown that the intermittency factor at a given point P can be written as : 

Y = 1 - exp (- f    gdV) (26) 

where R is the influence volume of P, defined by the locus of all points which influence the state of tu 
bulence at point P. By assuming that g can be approximated by a DIRAC's delta function, CHEN and THYSON 
/34/ obtained an expression valid for plane or axisymmetric flows : 

,r 
Y = 1 - exp Gr, r  dx   r  dx 

J   r   j   Up (27) 
— r^r     ~^   ■— 1 Ti 

r is the body radius and G is a function of Rx^ and Mach number. For plane, incompressible flows, (27) 
takes the following form : 

Y 1 - exp [j- .33 10-'*Rx^°-'^ G ,,  (x - XT)  f        dx -1 
e   X 2   J„  II J Uo-J 

(28) 

More recently, experiments performed at ONERA/CERT /9/ with zero and positive pressure gradients 
have shown that the momentum thickness 9 at the end of the transition region was about twice the momen- 

Y -  fC-e^-) or Y = f(|^) 

were adopted. They will be discussed later in more details. 

(29) 

4.2.  Local equations in the transition region 

At a given point in a transitional boundary layer, an instantaneous signal shows the successive 
appearance of turbulent spots and of laminar regions. In the following lines, all quantities related to 
the turbulent spots (respectively to the laminar regions) are denoted by the subscript t (respectively i). 
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An intermlttency function I(t) Is Introduced ; its value is 1 inside the spots and 0 outside the spots. 
The intermlttency factor Y is the time averaged value of I(t), and the "global" mean velocity U can be 
expressed as : 

U = YUj + (1 - Y) U^ (30) 

Similar relations are valid for the other components for the mean velocity. The root-mean-square 
value of the longitudinal fluctuation is given by : 

u'^ = Yu'2 + (1 _ Y) u^2 + yd - Y)(U^ - V^f (31) 

G. VANCOILLIE /35/ deduced a set of equations which apply separately to the turbulent and lami- 
nar regions. He assumed that the spots are two-dimensional (W. = W = 0) and that Y depends on x only. 
Concerning the mass conservation, the basic equations are : 

3u(t)  ^ 3v(t)  ^  aw(t) ^ g 
3x      3y      3z 

dioLi^iicii, u(t)%(^ ^.(t)^^ .w(t)^ 
dt      at dx dy dz 

(32) 

(33) 

(32) and (33) are combined and the time average is taken, so that the "zone averaged" continuity 
equations can be obtained : 

3YUt-   3YV)- ^ dl 
3x *'    3y   dt 

3(1 - Y)Uo_ ^ 3(1 - Y)Vg d][ 
dt 3x 3y 

Adding /3'4/ and /35/ yields the continuity equation for the global averaged velocity. 

Similar operations lead to the "zone averaged" momentum equations : 

3U^  ,  „ 3U^ 

(34) 

(35) 

U 
t 3x 

3Ug. 
3x 

V -T-'-  =  -r- + T;— (V -T-'- -  u v ) + additional terms 
t dy     p dx   3y    dy    t  t 

+ V 4^=-- — + T^(V4^- TH^) + additional terms 
„ 3y     p dx   3y    3y    II 

(36) 

(37) 

The additional terms express the Interaction at the interface between the turbulent spots and the 
surrounding  laminar flow. 

The modelling of the source terms inequations (36), (37) is described in /35/. The final set of 
equations to be solved is : 

Ml+ 3ll = 0 
9x    dy   

3x   n 3y     p dx  3y ^"^ 3y M'''''' ^  6^    1 - Y dx 

3Ut   3 V,- 
3x   3y ~^\ - V £ (38) 

U 
3Uj^ 

t 3x t 3y     p dx   3y       t  dy 
VI - V^    dY 

Y    dx 

•^nn \) uj, - Uf 1 dY 

"l Y dx 

The eddy viscosity V  is calculated with the k-e model, which gives, in fact, k^ and e^, because 
the transport equations are solved in the turbulent regions only. All source terms are proportional to 
dY/dx, so that a constant value of Y will produce two boundary layers growing independently. 

For numerical applications, the curve yix)   is given algebrically. The computer code provides the 
U . U , V , v., k and e profiles. In fact, the quantities measured in laboratory experiments are U and 

u'2, which are related to the zone averaged quantities by equations (30) and (31). For the purpose of com- 
parison between calculations and experiments, it is assumed that u^^ = Q  and u^2 = k^, so that u'2  is cal- 

culated by : 

u'2 = Y kj^ + Y (1 - Y) (U^ - U^) (39) 

Examples of results are presented in figure 17. The experiments have been performed at ONERA/CERT 
on a cylinder with zero pressure gradient /36/. The two considered stations are located in the middle 
(Y = 0.58) and towards the end (Y = 0.85) of the transition region. A remarkable fact is that the numerical 
model predicts fairly well the complicated shape of the turbulence profiles and especially the existing   ^ 
peak very close to the wall ; the difference between U^. and U^^ is very large and the quantity Y(1-Y) (U^-U^^) 
creates most of the "turbulence" energy. 
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A similar agreement was obtained with the experiments of SCHUBAUER-KLEBANOFF /31/ and those of 
WERLE-BLAIR /28/, /29/. The major shortcoming of this method is that the evolution of y must be prescribed. 
Moreover, it will be interesting to check its validity in cases involving positive pressure gradients, for 
which there is a progressive disappearance of the intermittency phenomenon. 

4.3.  Simpler methods 

Many of the practical engineering methods are less sophisticated and work only with the conti- 
nuity a'nd the momentum equations for the global mean flow : 

3U   3V 
8x    8y 

dx      dy 

(40) 

1 dP   3 ,  3U 
p dx  dy   dy 

u'v') 

In the calculation method developed at ONERA/CERT /37/, the turbulent shear stress is expressed by a 
modified mixing length scheme : 

YF^.Mf)^ (41) 

The mixing length I  and the wall damping function F keep the form already used for fully turbu- 
lent boundary layers /38/ : 

i  = 0.085 6 tanh (4.823 ^) 
0 

exp[/Tp?yi0.66  p] 

(42) 

(43) 

where T is the total shear stress. The low Reynolds number effects are included in the factor y, which may 
be considered, at first sight, as an intermittency factor, because it must increase from zero in laminar 
flow to unity in turbulent flow, y  is assumed to be a function of G/Srj., and first numerical comparisons 
were performed by considering : 

Y exp :-4.5 (f-i)j 

Examples of results are given in figure 18 ; comparison Is made with an experimental conf 
where transition occurs in a mild positive pressure gradient (case D of the ONF.RA/CERT experiments) 
streamwise evolution of y looks like the one predicted by SCHUBAUER-KLEBAKOFF or DAWAN-NARASIMHA (s 
but the computed shape factor falls too slowly and the skin friction coefficient is underestimated 
agreement is achieved when y is constrained to have an overshoot, well above unity (figure 18). It 
that y does not represent the physical intermittency factor ; it is referred as y in figure 18. Nev 
we keep the assumption that y depends on 9/9 only. 

(44) 

iguration 
. The 
ee § 4.1.), 
A better 
is clear 
ertheless 

ties by : 
In fact, the global shear stress  u'v' can be expressed as function of the zone-averaged quanti- 

u'v' = y u^ v^ + (1 - y) u^ Vj^ + Y (1 - y) (V^  -  U^) (V^. - V^) (45) 

where y is the "true" intermittency factor. (45) differs highly from (41), in which the zone averaged mean 
velocities do not appear. This explains why the multiplicative factor in (41) cannot represent the true 
Intermittency factor. 

CEBECI /39/ used an expression similar to (41), the intermittency factor being expressed by the 
relation (28) proposed by CHEN and THYSON. 

FOREST /22/ presented a technique somewhat similar to the previous ones. The shear stress is 
modelled under the form : 

2  ,3U 2 
u'v'  = yJ,^ (-g-)  + C^ T Ug A (46) 

I  is the classical mixing length, i^   is a modified mixing length taking into account the stream- 
lines curvature (SL^  = S, on a flat surface) . C and T represent a correlation factor and the free-stream 
turbulence level respectively. The "intermittency" factor y is defined through a lag equation of the form : 

dy ^ yp - y 
dx       L 

where L is a lag distance, y is expressed as : 

(47) 

Y, = 1 - (1 - y,s) (1 - Y,) (48) 

y^ is zero on smooth or convex surfaces. On concave surfaces, it depends on the ratio G9/G9 
where G9 represents the GORTLER number R9/97R. The classical intermittency factor was successfully applied 
to experimental cases involving high turbulence levels and large acceleration effects. 
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4.4.  Integral methods 

The intermlttency method.can be easily introduced in integral calculation methods, as it was done 
at ONERA/CERT /24/. The boundary layer development is computed by using the integrated momentum equation 
(Von KARMAN's equation) and an auxiliary equation (entrainment or mean energy equation). The closure rela- 
tionships are deduced from self-similarity solutions, and are obviously different in laminar and in turbu- 
lent flows. 

At a given point in the transition region, the laminar relationships give "fictitious" laminar 
characteristic parameters, such as the shape factor H  and the skin friction coefficient C_p. In the same 
way, H and C  are obtained from the turbulent relationships. The characteristic parameters of the tran- 
sitional boundary layer are then expressed as : 

H = YHj. + (1 - Y) H^ 

r.,  = YCf, - (1 - Y) Cj^ 
(49) 

with Y = 1 - exp (4.5 (-5- - 1)) 

Figures 19 and 20 present some applications of this technique. In the experiments reported in 
figure 19, the transition occurs in a positive pressure gradient, with a relatively low free-stream turbu- 
lence level. The transition onset is determined with the criterion described in § 3.3.c). Figure 20 shows 
a comparison with the experiments performed by WERLE-BLAIR in a negative pressure gradient, for two high 
values of T : 1 10"^ and 2 10~2. xhe transition position is imposed in the calculation method, because the 
criterion no longer applies (see § 3.4.e)). In any case, the experimental evolution of the boundary layer 
parameters in the transition region is fairly well reproduced. 

A similar technique was developed by GLEYZES, COUSTEIX and BONNET /26/ for computing short sepa- 
ration bubbles. In this case, a "direct" boundary layer method (the external flow is given) cannot be used, 
because it leads to a singularity in the vicinity of the zero skin friction point, except if the pressure 
gradient fills up a compatibility relation. This adjustment is made possible by an inverse mode formulation 
of the problem : the external velocity is the solution of the boundary layer equations, the distribution 
of 51, for instance, being the input of the calculation. An inviscld calculation must be associated, through 
a viscous-inviscid interaction procedure. 

Figure 21 shows a comparison between experiments and theory, for a case In which T = 0.4 10"^. 
The overall agreement is satisfactory. In particular, the validity of the transition criterion described 
in § 3.3.d) seems good, owing to the correct prediction of either the size of the pressure plateau or the 
evolution of the shape factor in the vicinity of reattachment. 

5 - TRANSITION CALCULATIONS BY TRANSPORT EQUATIONS 

During the last two decades, calculation methods using transport equations have been developed 
and applied to more and more complex turbulent flows. In addition, attempts have been made for extending 
the range of applications of such methods to the prediction of transition phenomena. For this, additional 
terms or empirical functions have been introduced in the fully turbulent form of the equations ; they de- 
pend usually on the "turbulence Reynolds number" R , which represents the ratio of the turbulent shear 
stress - u'v' to the viscous shear stress V -S^- • 

The numerical problem is to solve a set of parabolic partial differential equations with appro- 
priate initial and boundary conditions. These equations are the continuity and momentum equations, plus 
one, two or more transport equations for turbulent quantities. The calculation starts in laminar flow with 
specified initial profiles and proceeds step by step in the streamwise direction. If the turbulent quanti- 
ties are amplified, "transition" may occur, in this sense that the shear stress - u'v' becomes large and 
modifies the mean velocity profile. 

These methods present the advantage that a single run is needed for the computation of the laminar, 
transitional and turbulent boundary layer. A second advantage is that the influence of some important fac- 
tors acting on the transition processes appears naturally under boundary conditions : the pressure gradient 
effect is included in the momentum equation, and the free-stream turbulence level represents the value of 
the turbulent kinetic energy at the boundary layer edge. The major shortcoming, however, is that the set of 
constants and functions used to describe transition should be regarded as an empirical information and 
cannot explain (or contain) the fundamental mechanisms. 

5.1. Basic equations 

The basic equations that govern an incompressible, two-dimensional boundary layer are : 

f .f =  0 (50) 
3x   dy 

„ 8U  „ 3U    „ dUp   3 ,  3U    —r-Ts /C,N 

3x    3y     e dx   3y   3y 

The momentum equation (51) contains the double correlation u'v', which is an element of the 
Reynolds stress tensor. The complete equations for the turbulent shear stresses ul u! in a two-dimensional 
flow can be written as : 
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,  8u'    3ul 

D u|u:        3u^   3U.     3u' 3u: 

-W^     = - "k"j 37-- "k"l 3lJ^ - 2^ 37- 3^ 
^ . '  V L^ k^^ i^_k_y 

Convection        Production       Dissipation 
(52) 

+ ^  (y-^ + a-^) - -^ (ululu; + -2^ (6.,u: + 6.,u:) - v ^ (u'u')) p  3x     3x    3x   1 J k  p ^ jk 1   ik j^    3x,   i j^"^ 

^ -^v —-^ 
Redistribution Diffusion 

By adding the equations for the normal stresses (1 = j),one can deduce an equation for the turbu- 
lent kinetic energy k = 1/2 (u'2 + v'2 + w'2) : 

— = - u'v' g- - 2V (g—)  + g— (v -~)   +  turbulcnt diffusion (53) 

Due to the boundary layer assumptions, the production terms reduce to - u'v' -^— . The redlstrlbu- 
3y 

tion term vanishes by use of the continuity equation. The modelling of the dissipation and diffusion 
terms is discussed below. 

5.2. Earlier methods 

a) One-equation model - In fully established turbulent flows, the turbulent kinetic energy equa- 
tion is commonly used in addition to the classical eddy viscosity formulation : 

■1^      with V    =   C7.   V,i/2 

(2ajk)5/^ 

- " '''  " ^t  3^      "^''^        ^t °  (2ajk)'''  L (54) 

The dissipation e  is  given  by  : 

L (55) 

and the turbulent diffusion term is expressed by a gradient formulation : 

Turbulent diffusion = ^  (C,V |^) (56) 
dy  k t dy 

L = L(y) is a length scale which is given analytically, a and C     are constants. GLUSHKO /40/ 
extended this model to low Reynolds numbers by assuming that : 

V^ = h^ (2a^k)^/^ L 

Vk     (2aik)V^ 
e = 0.63 jj  + h^  i  ) (57) 

Turbulent diffusion = -^ (gC, V ^) 
3y    k t dy 

hj, h^ and g are known functions of R^, = —;j— .   They are equal to zero for R =0 and tend to 

unity for large values of R . The additional term in the expression of c becomes negligible in fully tur- 
bulent flow. 

BECKWITH and BUSHNELL /41/ (1968) used this model in the flat plate case, by starting the calcula- 
tion in laminar flow. The shape factor remained at first constant and then abruptly decreased at some va- 
lue of Rx. Multiplying the diffusion term by 3 Increased the "transition" Reynolds number (figure 22). 

b) DONALDSON'S model /42/. 1969 - DONALDSON presented a turbulence model in which the transport 

equations for u'2, v'2, w'2 and u'v'  were solved. By modelling the high-order correlations, he introduced 
a scale length A, which was not y-dependent. As an example, the u'2-equation takes the final form : 

(58) 5H;^=-2(ir^g.u'^f)-2v^.f (f-u-).Ac..,..,3u^;^ 
~v~ 

Production Diss.   Redistribution        Diffusion 

Most of the computational runs were made with initial disturbance 
profiles looking like the ones illustrated on the picture. Their shape is 
that of a spike of breadth Ay = 0.2 6 applied at y = 0.3 6. The scale'length / \        /c 
A represents the wave-length of the disturbance and remains constant during '  \      -'■' 
the run. When the calculation proceeds downstream, the turbulent kinetic ener- 
gy increases or decreases, depending on the values of X  and of the Reynolds      ^   \ "^        1 
number.  This attempt to establish a link with the linear stability theory -^ 
was interesting, but, on a practical point of view, no direct comparison with experiments was presented. 
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5.3. Two-equation models 

These models solve the turbulent kinetic energy equation and a second equation for a turbulent 
length scale £. More exactly, the second equation describes the behaviour of a combination of k and i, 
such as e " k'/"^ £"'. In fact, all these models have a similar general form, differing mainly in some 
empirical coefficients and In the low turbulence approximations. 

a) k-£ model - This model retains the k-equation and an equation for the dissipation rate e. Clo- 
sure assumptions have been developed by HANJALIC and LAUNDER /43/ for fully turbulent flows ; JONES and 
LAUNDER /44/ intcoduced supplementary terms for taking into account the effects of small values of Rj.. 

The final form of the equations for k and e Is as follows : 

Dk 
Dt 

3U 

3y 

^ = - c ^^^ Dt     ei k 

_3U 

9y 

2v (- 
8k 1/2 

3y 

E2 
2v v^ 

3^U 
3y2 

3k- 
^ ^ B- ^ ^k\) f: 3y 

i Cv - C^v^) 3yJ 

(58) 

with - u' 
3U 
3y 

and (2ap^ k^ 
e 

The terms set in a frame are those added by JONES and LAUNDER, f  and f  represent empirical func- 
tions of R . The two other terms have been introduced in order to obtain a correct evolution of k In the 

viscous sublayer of a turbulent boundary layer. C, "el' 
C - and 
e2 

a, are numerical constants. 

b) k-o) model - The transport equation for k appears in this model together with an empirical 
equation for the turbulent vorticlty energy 0)^ = k£~^. The turbulence model was at first developed by 
SAFFMAN and WILCOX /45/ for fully turbulent flows and then extended by WILCOX /46/ to cases involving 

transition calculations : 

i=a-i^s-^-i>^"^^ic^^^vt)f] 
DM-' |"n 2   3U 

3y 
2(2ap2   0)' FP" 

(59) 

with u'v'   =   (0+  v^) 3U 
"3y 

and 
k 

Let us observe that in the k-equatlon, it was assumed that - u'v' = 2a.k (production term) and 

(2a ) 2 liik   (dissipation term), a a , C, and C are constants and f is a given function of R = 

More recently, WILCOX /47/ revised his model in order to develop "an alternative to the e pro- 
cedure". The boundary layer computation consist of two phases. In the first phase, conventional linear 
stability calculations are performed until the initial disturbance has been amplified by a factor of e . 
In the second phase, the k-co^ model is used and allows to represent non linear processes which ultimately 
lead to transition ; the initial profiles for k and u^, as well as an Important parameter included in the 
low turbulence functions, are deduced from the stability computations. As these profiles are frequency 
dependent, the spectral effects can be accounted for. 

c) k-ki?, model - ARAD, BERGER, ISRAELI and WOLFSHTEIN /48/ extended the NG' s turbulence model to 

the computation of laminar and transitional flows. The turbulence is defined by the kinetic energy k and 

its scale i,   which is expressed as : 

i = 
1 

/: 
Edi) dk with k /: E(E) dii (60) 

R is the wave number and E(lc)represents the one-dimensional spectral distribution of the energy. The NG's 
model describes the behaviour of k and of the product V.i. When the low Reynolds numbers modifications are 
included, the governing equations are : 

Dk _ 
Dt 

—i—r 8U 

D(k ) 
Dt - ^s V 

^\    k^^'   3 r.   ^  , 3k-, 
- ^ 37 ^^^ " Vt) 37^ 0 

c, ,3U, 

f I  y     t 3y 

3U 
V ^r^ and V = 
t dy     t 

C /k"2 

(61) 

3(ki!,) ^"' ^ i B^ ^ \.\) ^: 

f , f_, f , f. and f  are obviously functions of R = 
/kl 
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5.4. Other models 

a) MacDONALD-FISH model - A somewhat different technique was proposed by MacDONALD and FISH /49/. 
The basic equations remain of course the continuity and momentum equations, in which the turbulent shear 
stress is expressed by a mixing length relation : 

- "US^ = JIM|^) ' with  I = ^ tanh(0.4 |) (62) 

The free-stream mixing length level, £e, is calculated by an auxiliary equation. This equation 
is the turbulent kinetic energy equation integrated across the boundary layer. In this way, there is no 
partial differential equation to solve for k, but only an ordinary differential equation. 

The viscosity effects are accounted for by a multiplicative function ?& : 

,3U, -^I^^3,'  i'   (p (63) 

The damping function 2) depends on R  and on a second parameter in which the wall roughness 
effects are included. 

b) FINSON's model - FINSON solved a five-equation model /50/. The dependent turbulent quantities 
are the three components of the turbulent kinetic energy u'2 , v'^, w'2, the Reynolds stress u'v'  and the 
dissipation rate e. The production, diffusion and dissipation effects are described with approximations 
commonly used in fully turbulent flows. Some additional terms are introduced for achieving the low Reynolds 
number behaviour. On the other hand, the closure requirements for the redistribution terms are found to be 
critical in the transition region. It should be noted that the two-equation model avoid this difficulty, 
because these terras cancel in the turbulent kinetic energy equation. 

In order to take into account the effects of distributed surface roughness, FINSON introduced 
source or sink terms in the various governing equations. For example, the sink term in the momentum 
eqtiatlon is : 

S = - - p U^Cj^ B/SL^ (for y < k, the roughness height)    (64) 

D is the mean diameter of the roughness elements, i  is the mean spacing between elements and 
C = 0.5 represents a drag coefficient. Source terms in the transport equations describe the production 
of turbulence due to the wakes of the roughness elements. 

5.5. Examples of numerical results 

a) Flat plate flow - Figure 23 shows the influence of T on the transition Reynolds number as com- 
puted by many authors : MacDONALD and FISH /49/, ARAD et al. /48/, FINSON /50/ and ARNAL et al. /36/, who 
used the k-E model. The hatched area covers the range of experimental data. The overall trend is well re- 
produced by the calculations ; the FINSON's results, however, exhibit a somewhat more rapid transition 
movement than that observed. 

"e-'-cc 
ARAD et al.  studied the Influence of the length scale Reynolds number R =   , where i     is 

the mean value of <L  outside the boundary layer. The numerical results plotted in figure'24 for 1 = 7 10"^, 
reveal that the transition Reynolds number decreases when Rj increases (the points in figure 23 have been 
obtained with Rjj = 211). A systematic study of the influence of e has not been done with the k-e model. 

A fairly good agreement is also achieved when the theoretical evolutions of the boundary layer 
parameters are compared with the experimental ones ; in particular, the transport equations give a satis- 
factory estimate of the transition region extent. Nevertheless, important discrepancies appear as concerns 
the shape of transitional turbulence profiles, as it can be seen in figure 17 ; the turbulence peak near 
the wall cannot be reproduced, because the intermittency phenomenon is not included in the model. 

ti) Effect of wall roughness - FEINDT /51/ measured the effect of distributed surface roughness 
(sandpaper) on the transition location for different flow conditions and roughness heights. In figure 25, 
a comparison is presented between FEINDT's measurements and calculations performed by MacDONALD and FISH' 
/49/ with T = 0.75 10-^. The agreement is correct, but it may be believed that the "roughness function" 
has been determined in order to fit the experimental results. A reasonable quantitative agreement with 
FEINDT's data was also obtained by FINSON /50/ and WILCOX /46/ . 

c) Effect of pressure gradient - The ability of the k-e model to predict the transition onset has 
been tested /24/ for the three velocity distributions plotted in figure 26. In all cases, the calculation 
starts at the stagnation point. For x > 0.15 m, the curves® ,©  and ® correspond respectively to 
negative, zero and positive pressure gradients. The free-stream turbulence level is low and identical for 
the three computational runs. 

The table reported in figure 26 presents the numerical values of H and R6 at the transition loca- 
tion ; they indicate that the transition Reynolds number increases in the adverse pressure gradient. This 
result is completely at variance with the available experimental results. This strong disagreement is cer- 
tainly due to the fact that the real transition mechanisms are linked with stability properties, at least 
for low values of T, and the transport equations could hardly be expected to reproduce linear stability 
theory. Let us note, however, that BRILEY and MacDONALD /52/ were able to obtain fairly good predictions 
of incompressible separation bubbles by using the MacDONALD-FISH model /49/. 

<^) Combined effects of dP/dx and T - TURNER /53/ has reported measurements of the heat transfer 
distribution on a cooled turbine blade, for three free-stream turbulence levels. For predicting such 
complex flows, the enthalpy equation is introduced into the computer code. Figure 27 presents a comparison 
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between experiments and k-e model calculations /35/ on the pressure side of the airfoil, where the fre 
stream velocity accelerates rapidly and almost linearly with streamwise distance. The dashed curves repre- 
sent the results of laminar calculations. 

For T = 0.45 10"^, the boundary layer remains laminar over the entire length of the blade. For 
T = 5.9 10"^, transition occurs close to  the leading edge. At the Intermediate turbulence level, transi- 
tion starts at X = 1.5 cm and the numerical results indicate that the boundary layer is not fully turbu- 
lent at the trailing edge. In all cases, the calculation reflects well the experimental behaviour. Similar 
results have been obtained by PRIDDIN (as reported by LAUNDER /54/)and by MacDONALD-FISH /49/ , among others. 

The analysis of TURNER'S data shows that, for the cases where transition exists, the critical 
Reynolds number is never reached and that the linear stability mechanisms are completely bypassed. This 
bypass was already encountered in the WERLE-BLAIR experiments (see § 3.4.) which dealt with similar expe- 
rimental conditions. When the MacDONALD-FISH method is applied to these experiments, rather good results 
are obtained /28/. 

In a general manner, the transport equations give satisfactory results in cases involving large 
values of T. In such cases, non linear phenomena preponderate and seem to be well described by the trans- 
port equations. Moreover, some of these methods have been successfully applied to relaminarizing flows. 
(The k-e model was at first modified by JONES and LAUNDER /44/ in order to predict relarainarization). For 
these reasons, the transport equations models are certainly the most efficient tools for predicting the 
combined effects of high turbulence levels and of negative pressure gradients (turbomachinery problems). 

6 - CONCLUDING REMARKS 

Obviously, none of these presented methods is able to predict correctly transition for all prac- 
tical purposes.All these techniques need the introduction of empirical data, which reduce considerably the 
range of applications. These data are, for instance, low Reynolds number functions (transport equations) 
or values of critical amplification rates (e" methods). Among the many factors acting on stability and 
transition, two are currently accounted for : the pressure gradient and the free-stream turbulence level ; 
let us observe, however, that the latter one Is only characterized by a rms value and not by its spectrum 
(except in MACK's amplitude method and in some turbulence models). 

At low values of T, methods based on instability theory are certainly the most accurate ones : 
the pressure gradient effects appear "naturally" through the evolution of the mean velocity profiles. The 
free-stream turbulence Influence is given, for Instance, by MACK's relation /8/ which constitutes, in fact, 
a correlation between the initial perturbation amplitude AQ and T. The link between Ag and the external 
disturbances is the key problem of transition phenomena : recent calculations /55/ /56/ in which the 
three-dimensional NAVIER-STOKES equations were solved, gave a complete picture of the linear and non linear 
development of Instability waves, but the initial amplitude was imposed. 

At high values of T, the laminar instability theory no longer applies and the e methods, as well 
as criteria based on this theory (/24/ /ll/) are not valid. To our thinking, the transport equations can 
provide fairly good results in such situations. Some empirical criteria (DUNHAM, Van DRIEST, SEYB) cover 
a wide range of free-stream turbulence intensities, but correlations between R9^ and a local parameter at 
the transition point (A2  for instance) often lead to large errors, because the boundary layer history is 
not taken into account. 

On the other side, the calculation of the transition region Itself does not constitute a crucial 
problem. It was shown that simple methods give right predictions in very different situations. The inac- 
curacies of these methods are small as compared with large errors which can arise in the prediction of the 
transition onset. 
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Fig. 1 - Stability diagram for BLASIOS flow 
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Fig. 2 - Total amplification curves for various frequencies and envelope curve (flat plate) 

0 1000 2000 3000 

Fig. 3 - Envelope curves for FALKNER-SKAN similarity profiles 
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BOUNDARY-LAYER LINEAR STABILITY THEORY 

by 

Leslie M. Mack 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena, California 91109 

U.S.A. 

1.   INTRODUCTION 

1.1 Historical background 

Most fluid flows are turbulent rather than laminar and the reason why this is so has been the obieot 
of study by several generations of investigators. One of the earliest explanations was that laminar flow 
is unstable, and the linear instability theory was first developed to explore this possibility. Such an 
approach tells nothing about turbulence, or about the details of its initial appearance, but it does 
tftfl7^^"Q,'"Jfto^^^1T^'^^^°^^ lammar flow can no longer exist. A series of early papers by Rayleigh (1880, 
1Ha7,1S92,1895,1913) produced many notable results concerning the instability of inviscid flows such as 
the discovery of inflectional instability, but little progress was made toward the origi'nal goal. 
Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles 
thus appeared to be stable. In a review of 30 years of effort, Noether (1921) wrote: "The method of 
small disturbances, which can be considered essentially closed, has led to no useful results concerning 
the origin of turbulence." 

Although Taylor (1915) had already indicated that viscosity can destabilize a flow that is otherwise 
stable, it remained for Prandtl (1921), in the same year as Noether's review paper, to independently make 
the same discovery as Taylor and set in motion the investigations that led to a viscous theory of 
boundary-layer instability a few years later [Tollmien (1929)]. A series of papers by Schlichting (1933a 
1933b,1935,19K0), and a second paper by Tollmien (1935) resulted in a well-developed theory with a small 
body of numerical results. Any expectation that instability and transition to turbulence are synonomous 
in boundary layers was dashed by the low value of the critical Reynolds number Re„„, i.e. the x Reynolds 
Tnnn   "!. instability first appears.  Tollmien's value of Re„„ for the Blasius boundary layer was 
60,000, and even in the high turbulence wind tunnels of that time, transition was observed to occur 
between Re^ = 3.5 x 10= and 1 x 10^ In what can be considered the earliest application of linear 
stability theory to transition prediction, Schlichting (1933a) calculated the amplitude ratio of the most 
amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this 
quantity had values between five and nine at the observed Re^. 

Outside of Germany, the stability theory received little acceptance because of the failure to observe 
the predicted waves, mathematical obscurities in the theory, and also a general feeling that a linear 
theory could not have anything useful to say about the origin of turbulence, which is inherently 

Mo",B^"^^I^v, ^°°'^ "^^ °*' ^^^ ^°" '■^P"^® °^ ^^^ ^^^°''^ °^" "« sained by reading the paper of Taylor 
loJ T?^ discussion on this subject in the Proceedings of the 5th Congress of Applied Mechanics held 

in 1938. It was in this atmosphere of disbelief that one of the most celebrated experiments in the 
history of fluid mechanics was carried out. The experiment of Schubauer and Skramstad (1947), which was 
performed in the early igtO's but not published until some years later because of wartime censorship, 
completely reversed the prevailing opinion and fully vindicated the Gottingen proponents of the theory 
This experiment unequivocally demonstrated the existence of instability waves in a boundary layer their 
connection with transition, and the quantitative description of their behavior by the theory of Tollmien 
and Schlichting. It made an enormous impact at the time of its publication, and by its very completeness 
seemed to answer most of the questions concerning the linear theory. To a large extent, subsequent 
experimental work on transition went in other directions, and the possibility that linear theory can be 
quantitatively related to transition has not received a decisive experimental test. On the other hand, it 
is generally accepted that flow parameters such as pressure gradient, suction and heat transfer 
qualitatively affect transition in the manner predicted by the linear theory, and in particular that a 
flow predicted to be stable by the theory should remain laminar. This expectation has often been 
deceived. Even so, the linear theory, in the form of the e?, or N-factor, method first proposed by Smith 
and Gamberoni (1956) and Van Ingen (1956), Is today in routine use in engineering studies of laminar flow 
.nnVn !•?/•' ';f;' """"^""f ^"^ ^"^'^"^^l (1979)]. A good introduction to the complexities of transition 
and the difficulties involved in trying to arrive at a rational approach to its prediction can be found in 
three reports by Morkovin (1969,1978,1983), and a review article by Reshotko (1976). 

The German investigators were undeterred by the lack of acceptance of the stability theory elsewhere 
and made numerous applications of it to boundary layers with pressure gradients and suction. This work is 
summarized in Schlichting's book (1979). We may make particular mention of the work by Pretsoh (19K2), as 
he provided the only large body of numerical results for exact boundary-layer solutions before the advent 
of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity 
nfu'Jf^' H u """Tn^o^^"^ mathematics of the asymptotic theory was put on a more solid foundation by Lin 
[lltllTg  and 7eid (1978)]   ^"^ """^ ^^^  ''^^" successfully continued by Reid and his collaborators 

Of th!^nri™Lf H^rf^^^°.^''f '^^^^l^^ computer reached a stage of development permitting the direct solution 
of the primary differential equations, numerical results were obtained from the linear theory during the 
next ten years for many different boundary-layer flows: three-dimensional boundary layers [Brown (^959)! 
following the important theoretical contribution of Stuart in Gregory et al. (1955)]; free-convection 

(1°962)"JndTack 196 ^ 969)1-'b'^'i ^''\'^ '"' Nachtsheim (1963)]; compressible boundary layers [Bro^n 
(1962) and Mack (1965,1969)]; boundary layers on compliant walls [Landahl and Kaplan (1965)]- a 
recomputation of Falkner-Skan flows [Wazzan, Okamura and Smith (1968)]; unsteady boundary lay'ers 
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[Obremskl, Morkovin and Landahl (1969)]; and heated-wall water boundary layers [Wazzan, Okamura and Smith 
(1968)]. More recent work has focussed on three-dimensional boundary layers in response to the renewed 
interest in laminar-flow control for swept wings [Srokowski and Orszag (1977), Mack 
(1977,1979a,1979b,1981), Nayfeh (1980a,igSOb), Cebeci and Stewartson (1980a,1980b), Lekoudls (1979,1980)]. 
A notable contribution to linear stability theory that stands somewhat apart from the principal line of 
development has been provided by Caster (1968,1975,1978,1981a,1981b,1982a,1982b) in a series of papers on 
the wave packets produced by a pulsed point source in a boundary layer. Caster's work on this problem 
also includes a major stability experiment  [Caster and Grant  (1975)]. 

There are a number of general references that are helpful to anyone interested in the linear theory. 
Review articles are by Schlichting (1959), Shen (195H), Stuart (1963) and Raid (1965). Books are by Lin 
(1955), Betohov and Criminale (1967), and Drazin and Reid (1981). Sohlichting's book on boundary-layer 
theory (1979) contains two chapters on stability theory and transition, and Monin and Yaglom's book on 
turbulence (1971) contains a lengthy chapter on the same subject, as does the book by White (1971) on 
viscous flow theory. Reviews of transition have been given by Dryden (1959), Tani (1969,1981), Morkovin 
(1969,1978,1983), and Reshotko (1976). An extensive discussion of both stability theory and transition, 
not all at high speeds in spite of the title, may be found in the recorded lectures of Mack and Morkovin 
(1971). 

1.2    Elements of stability theory 

Before we get into the main body of the subject, a brief introduction is in order to orient those who 
are new to this field. The stability theory is mainly concerned with individual sine waves propagating in 
the boundary layer parallel to the wall. These waves are waves of vorticity and are commonly referred to 
as Tollmien-Schlichting waves, or TS waves, or simply as instability waves. The amplitudes of the waves, 
which vary through the boundary layer and die off exponentially in the freestream, are small enough so 
that a linear theory may be used. The frequency of a wave is to and the wavenumber is k = 2Tr/X, where 
is the wavelength. The wave may be two-dimensional, with the lines of constant phase normal to the 
freestream direction (and parallel to the wall), or it may be oblique, in which case the wavenumber is a 
vector k at an angle <p to the freestream direction with streamwise (x) component a and spanwise (z) 
component B. The phase velocity c is always less than the freestream velocity U^, so that at some point 
in the boundary layer the mean velocity is equal to c. This point is called the critical point, or 
critical layer, and it plays a central role in the mathematical theory. The wave amplitude usually has a 
maximum  near  the critical layer. 

At any given distance from the origin of the boundary layer, or better, at any given Reynolds number 
Re = U^x/v, where v is the kinematic viscosity, an instability wave of frequency u will be In one of 
three states: damped, neutral, or amplified. The numerical results calculated from the stability theory 
are often presented in the form of diagrams of neutral stability which show graphically the boundaries 
between regions of stability and instability in oj,Re space or k,Re space. There are two general kinds of 
neutral-stability diagrams to be found, as shown in Fig. 1.1 for a two-dimensional wave in a two- 
dimensional boundary layer. In this figure, the dimensionless wavenumber ci<5 is plotted against R5, the 
Reynolds number based on the boundary-layer thickness 5 . Waves are neutral at those values of a6 and R5 
which lie on the contour marked neutral; they are amplified inside of the contour, and are damped 
everywhere else. With a neutral-stability curve of type (a), all wavenumbers are damped at sufficiently 
high Reynolds numbers. In this case, the mean flow is said to have viscous instability. Since decreasing 
Reynolds number, or increasing viscosity, can lead to instability, it is apparent that viscosity does not 
act solely to damp out waves, but can actually have a destabilizing influence. The incompressible flat- 
plate (Blasius) boundary layer, and all incompressible boundary layers with a favorable pressure gradient, 
are examples of flows which are unstable only through the action of viscosity. With a neutral-stability 
curve of type (b), a non-zero neutral wavenumber (a6 )g exists at Re -> » , and wavenumbers smaller than 
(a6)_ are unstable no matter how large the Reynolds number becomes. A mean flow with a type (b) neutral- 
stability curve is said to have invisoid instability. The boundary layer in an adverse pressure gradient 
is an example of a flow of this kind. 

In both cases (a) and (b), all waves with a6 less than the peak value on the neutral-stability curve 
are unstable for some range of Reynolds numbers. The Reynolds number Re^j, below which no amplification is 
possible is called the minimum critical Reynolds number. It is often an objective of stability theory to 
determine Re , although it must be cautioned that this quantity only tells where instability starts, and 
cannot be relied upon to indicate the relative instability of various mean flows further downstream. It 
is definitely not proper to identify Re^^ with the  transition point. 

A wave which is introduced into a steady boundary layer with a particular frequency will preserve 
that frequency as it propagates downstream, while the wavenumber will change. As shown in Fig. 1.1, a 
wave of frequency oi which passes through the unstable region will be damped up to (Re),, the first point 
of neutral stability. Between (Re)^ and (Re)jj, the second neutral point, it will be amplified; downstream 
of (Re)„ it will be damped again. If the amplitude of a wave becomes large enough before (Re)^ is 
reached, then the nonlinear processes which eventually lead to transition will take over, and the wave 
will continue to grow even though the linear theory says it should damp. 

The theory can be used to calculate amplification and damping rates as well as the frequency, 
wavenumber and Reynolds number of neutral waves. For example, it is possible to compute the amplification 
rate as a function of frequency at a given Re. The neutral-stability curve only identifies the band of 
unstable frequencies, but the amplification rate tells how fast each frequency is growing, and which 
frequency is growing the fastest. Even more useful than the amplification rate is the amplitude history 
of a wave of constant frequency as it travels through the unstable region. In the simplest form of the 
theory, this result can be calculated in the form of a ratio of the amplitude to some initial amplitude 
once the amplification rates are known. Consequently, it is possible to identify, given some initial 
disturbance spectrum, the frequency whose amplitude has increased the most at each Reynolds number. It is 
presumably one of these frequencies which, after it reaches some critical amplitude, triggers the whole 
transition process. 
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We have divided the following material into three major parts: the incompressible stability theory 
is in Part A, the compressible stability theory is in Part B, and three-dimensional stability theory, both 
incompressible and compressible, is in Part. C. The field of laminar instability is a vast one, and many 
topics that could well have been included have been left out for lack of space. We have restricted 
ourselves strictly to boundary layers, but even here have omitted all flows where gravitational effects 
are important, low-speed boundary layers with wall heating or cooling, and the important subject of 
Gortler instability. Within the topics that have been included, we give a fairly complete account of what 
we consider to be the essential ideas, and of what is needed to understand the published literature and 
make intelligent use of a computer program for the solution of boundary-layer stability problems 
Attention is concentrated principally on basic ideas, but also on the formulations which are incorporated 
into computer codes based on the shooting-method of solving the stability equations. Only selected 
numerical results are included, and these have been chosen for their illustrative value, and not with any 
pretension to comprehensive coverage. Numerous references are given, but the list is by no means 
complete. In particular, a number of USSR references have not been included because of my unfamiliarity 
with the Russian language. Much use has been made of a previous work [Mack (1969)], which is still the 
most complete source for compressible boundary-layer stability theory. 

PART A.     INCOMPRESSIBLE STABILITY THEORY 

2.       FORMULATION  OF  INCOMPRESSIBLE STABILITY THEORY 

2.1    Derivation of parallel-flow stability equations 

The   three-dimensional   (3D)   Navier-Stokes  equations   of  a viscous,   incompressible  fluid  in Cartesian 
coordinates are 

oUj ,   3u ,        -* 

A 

j 9^1 "■ (2.1a) 3t"       J ax'' p" - * 

3 
_* 
i    =   0      , (2.1b) 

3x 

where u ^ = (u ,v ,w ), x^ = (x ,y ,z ), and i, j = (1,2,3) according to the summation convention. The 
agterjsks^ denote dimen|ion|l qj^antities, and overbars denote time-dependent quantities. The velocities 
"-'-J..'^." _.^''-»^". ^^^.'^ >   y .   z    dir|ctions,   respectively,   where x    is the streamwise and z    the spanwise 

defined as 

The dimensionless equations are identical to Eqs. (2.1) except that v* is replaced by 1/R, and p* is 
absorbed into the pressure scale. 

We next  divide each flow variable into a steady mean-flow  term (denoted by an upper-case letter) and 
an unsteady small disturbance term (denoted by a lower-case letter): 

Uj^(x,y,z,t)  = Uj^(x,y,z)  + Uj^(x,y,z,t)   , 

(2.3) 
p(x,y,z,t)  =  P(x,y,z)  + p(x,y,z,t)   . 

When these expressions are substituted into Eqs. (2.1), the mean-flow terms subtracted out, and the terms 
which are quadratic in the disturbances dropped, we arrive at the following dimensionless linearized 
equations for the disturbance quantities: 

^"i ^"T 3"- 

air ^ -^j 31" + "j ^ =~t + -'\  ' ^'-'^^ 
J J .1 i J J 

8u 

3"x 
--"i   = 0    . (2.4b) 

For a truly parallel mean flow, of which a simple two-dimensional example is a fully-developed 
channel flow, the normal velocity V is zero and U and W are functions only of y. The parallel-flow 
equations,  when written out,  are 

3u 3u     ,  ,, 3u 
8t+"3x    +"3l    +^d7    =-3^    +^^"     . —   = - g^   + vv u    , (2.5a) 

3t + "3x+"^ =-3^+^'v, (2.5b) 

9w   ,   ,, 3w     ,  „ 3w     ,       dW 3p 2 

3u 3v     ,   3w        „ , , 
3i    + 37    + 3l    =  °     • (2-5d) 

These equations are in separable form,  i.e.,  they permit the normal-mode solutions 
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[u.v.w.p]''^ =  [u(y),v(y),S(y),pCy)]T exp[i(ax+ez-wt)] (2.6) 

where « and 3 are the x and z oonponents of the wavenumber vector k, oi is the frequency, and u(y), 
^(y), w(y) and g(y) are the complex functions, or elgenfunctions, which gives the mode structure through 
the boundary layer, and are to be determined by the ordinary differential equations given below. It is a 
matter of convenience to work with complex normal modes; the physical solutions are the real parts of Eqs. 
(2.6). The normal modes are travelling waves in the x,z plane, and in the most general case, a. Band u 
are all complex. If they are real, the wave is of neutral stability and propagates in the x,2 plane with 
constant amplitude'' and phase velocity c roj/k, where k = (a^+Sry'^ is the magnitude of k. The angle of 
ic with respect to the x axis is >p= tan'HB/a). If any of a, 3 ,u are complex, the amplitude will change 
as the wave propagates. 

When Eqs. (2.6) are substituted into (2.5), we obtain the following ordinary differential equations 
for the modal  functions: 

i(aU+BW-a))u + DUv = -lag + ^ [D^ -  (a^■^ti^)Ju  , (2.7a) 

l(aU+BW-a))v = -Dp    +1 [D^ -  (a^+g^)]^  , (2.7b) 
R 

i(aU+BW-a))w + DWO = -i3p + i [D^ -  (a^+g^)]}}  , (2.7c) 
R 

aQ + 3w + D^ = 0   , (2.7d) 

where D = d/dy. For a boundary layer, the boundary conditions are that at the wall the no-slip condition 
applies, 

u(0) = 0,  v(0) = 0,  w(0) = 0  , (2.8a) 

and that far from the wall all disturbances go to zero, 

u(y) -*  0,  ^(y) -* 0,  w(y) + 0 as y -* ■» . (2.8b) 

Since the boundary conditions are homogeneous, we have an eigenvalue problem, and solutions of Eqs. (2.7) 
that satisfy the boundary conditions will exist only for particular combinations of a , 3 and o). The 
relation for the eigenvalues,  usually called the dispersion relation,   can be written as 

CO =   n(a,3)   . (2.9) 

There are six real quantities in Eq. (2.9); any two of them can be solved for as eigenvalues of Eqs. (2.7) 
and (2.8), and the other four have to be specified. The evaluation of the dispersion relation for a given 
Reynolds number and boundary-layer profile (U,W) is the principal task of stability theory. The 
eigenvalues, along with the corresponding elgenfunotlons u, v, w and p, give a complete specification of 
the normal modes. The normal modes, which are the natural modes of oscillation of the boundary layer, are 
customarily called Tollmien-Schlichting (TS)  waves,   or instability waves, 

2.2    Non-parallel stability theory 

Except for the asymptotic suction boundary layer, most boundary layers grow in the downstream 
direction, and even for a wave of constant frequency a, 3, u, v, w and p are all functions of x (and z in 
a general 3D boundary layer). What we have to deal with is a problem of wave propagation in a nonuniform 
medium. Since the complete linearized equations (2.4) are not separable, they do not have the normal 
modes of Eq. (2.6) as solutions. The most straightforward approach is to simply set the non-parallel 
terms to zero on the grounds that the boundary-layer growth is small over a wavelength, and it is the 
local boundary-layer profile that will determine the local wave motion. This approach, called the quasl- 
or locally-parallel theory, has been almost universally adopted. It retains the parallel-flow normal 
modes as local solutions, but is, of course, an extra approximation beyond linearization and leaves open 
the question of how Important the admittedly slow growth of the boundary layer really is. It also makes 
for difficulties in comparisons between theory and experiment. 

The first complete non-parallel theories were developed independently by (in order of Journal 
publication date) Bouthler (1972,1973), Gaster (1971) and Saric and Nayfeh (1975). Gaster used the method 
of successive approximations; the others used the method of multiple scales. There has been considerable 
controversy on this subject, mainly because of the way in which Saric and Nayfeh (1975,1977) chose to 
present their numerical results, but it Is now generally agreed that the three theories are equivalent. 
Caster's calculations of neutral-stability curves for the Blasius boundary layer have since been verified 
to be correct by Van Stijn and Van de Vooren (1983), and have the additional virtue of being based on 
quantities that can be measured experimentally. The calculations show the non-parallel terms to have 
little effect on local instability except at very low Reynolds numbers. However, this does not mean that 
non-parallel effects can be neglected when dealing with waves over distances of many wavelengths. 

In the multiple-scale theory, in addition to the usual "fast" x scale over which the phase changes, 
there is a "slow" x scale, x- = ex, where e is a small quantity identified with 1/R. The slow scale 
governs the boundary-layer growth, the change of the elgenfunctions, and a small additional amplitude 
modulation.    The disturbances are expressed in the form 

u = u^O^  + eu(1)  +  ...   , (2.10) 

1. The term amplitude will always refer to the peak or rms amplitude, never to the instantaneous 
amplitude. 
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with similar expressions for v, w and p. The mean flow is given by 

U(x,y) = u(°5(x^) + ... , 

W(x,y) = W^O^Cx^) + ... , (2.11) 

V(x,y) = ev(°)(x,) + ... . 

Here the mean boundary layer is independent of 2,   and this is the only kind of boundary layer that we will 
consider in this work.    Examples are 2D planar boundary layers and the boundary layers on a rotating disk 
on a cone at zero incidence,   and on an infinite-span swept wing. ' 

When Eqs. (2 11) are substituted into Eqs. (2.11) and equal powers of e collected, the zeroth-order 
equations for u^^>, v^"^ w^O) ^„j p(0) ^^^ identical to the parallel-flow equations (2.5). The normal 
modes, however, have the more general form 

u(0)(x,y,z,t)  =  A(x^)u(O)(xpy)exp[i0(°^(x,z,t)]   , (2.12) 

where the phase function is 

e(0)(x,2,t)  =/''a(0)(xi)dx +  B(0)(XT)Z - JO)(xi)t    , (2.13) 

and A(X,) is a complex amplitude modulation function.     The dispersion relation also becomes a function of 
X 

JO)  =«(0)(„(0),3(0).,^)   , (2_^^j 

The non-parallel theories as developed by Bouthier, Caster, and Saric and Kayfeh calculate the dispersion 
relation only to zeroth order, just as in the quasi-parallel theory. The next order (e^) enters only as a 
solvability condition of the first-order equations.     This  condition determines  the function A(x,). 

We shall use only the quasi-parallel theory in the remainder of this work. Consequently, all of the 
zeroth-order quantities are calculated as functions of x in accordance with Eqs. (2.12), (2 13) and 
(2.14). However, the quasi-parallel theory cannot determine the quantity A(x-), and this is simply set 
equal to the initial amplitude AQ. In the non-parallel theory, the product! Afi is a unique quantity, 
independent of the normalization of the eigenfunction u, that gives a precise meaning to the amplitude of 
the flow variable fi as a function of y and permits direct comparisons of theory and experiment. In the 
quasi-parallel theory, only the contribution to the amplitude that comes from the imaginary parts of a B 
and 0) can be accounted for. The corrections due to the function A(x,) and the x dependence of the 
eigenf unctions are outside of the scope of the theory. This lack of physical reality in the quasi- 
parallel theory introduces an uncertainty in the calculation of wave amplitude and complicates comparisons 
With experiment.     More on the use of the quasi-parallel theory can be found in Section 2.6. 

2.3    Temporal and spatial theories 

If a. and 0 are real, and u is complex, the amplitude will change with time: if a and B are 
complex and co is real, the amplitude will change with x. The former case is referred to as the temporal 
olol/v thi°."s . K""^' '^''f,,letter as the spatial amplification theory. If all three quantities are 
complex, the disturbance will grow in,space and time. The original, and for many years the only, form of 
indeLnd°Z Z\\ temporal theory. However, in a steady mean flow the amplitude of a normal mode is 
nqfiTlQfifio/.^ ? and changes only with distance. The spatial theory, which was introduced by Gaster 
nyb2,19b3,1965),   gives this amplitude change in a more direct manner than does the temporal theory. 

2.3.1    Temporal amplification theory 

With  a) = a)j,+ia^ and   a   and   g   real,  the disturbance can be written 

u(x,y,z,t)  = Q(y)exp(a)it)exp[i(/adx + Bz - a)j,t)]   . (2.15) 

The magnitude of the wavenumber vector k is 

k =  (a2 + B2)1/2  , (2.16) 

and the angle between the direction of k and the x axis is 

ii = tan"''(B/a)  . (2.17) 

has 'the'LI'^tudf °'  *"''°'' "' ""' ''''"""^ ""'^ "''"'^ ''" constant-phase lines move normal to themselves, 

° = V^    ' (2.18) 
llti^ V'^^^ direction of k.    if A represents the magnitude of u at some particular y,  say the v for which    C is a maximum,   then it follows from Eq.  (2.15)  that ^-^^-uj-dr y,  say tne y ror 

(1/A)(dVdt) = 0)^ . (2.19) 

for°anofht'^*ffo "i ^^ ^^^ ^r^fl^^ amplification rate.    Obviously A could have been chosen at any y. or 
n!/ .  .,.    IV ^''i^"^^ besides u, and Eq. (2.19) would be the same.    It is this property that enables 
Z.l    «tn ?H°    ."it ^"'P"^"'*^" °^ a° instability wave in the same manner as the amplitude  of a  water 
wave,   even though  the  true  wave  amplitude  is  a function of y and the particular flow variable selected. 
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We may distinguish three possible oases: 

coj^ < 0 damped wave , 

M^ = 0 neutral wave , 

OJ^ > 0 amplified wave 

The complex frequency may be written 

kc k(Oj, + io^) 

(2.20) 

(2.21) 

The real part of c is equal to the phase velocity o, and kc^ is the temporal amplification rate. The 
quantity c appears frequently (as o) in the literature of stability theory. However, it cannot be used in 
the spatial theory, and since general wave theory employs only k and co , with the phase velocity being 
introduced as necessary,   we shall adopt the same procedure. 

2.3.2    Spatial amplification theory 

In the spatial theory,   a   is real and the wavenumber components a and B  are complex.      With 

a = Hj. + iaj_  , B   = gj. + iej_     , (2.22) 

we can write the normal modes in the form 

u(x,y,z,t)  = u(y)exp[-(  Ta^dx + B^z)]exp[i(y \dx + Bj,z -   oit)]   . (2.23) 

By analogy with the temporal theory,  we may define a real wavenumber vector k with magnitude 

k =  (a^ + Bb1/2  , (2.24) 

The angle between the direction of k and the x axis is 

>ii  = tan"''(6j./aj.)  , 

and the phase velocity is 

c =  (Jj/k . 

(2.25) 

(2.26) 

It follows from Eq.   (2.23)  that 

(1/A)dA/dx (2.27) 

and we can identify -a. as the amplification rate in the x direction. In like manner -B^ is the 
amplification rate in the z direction. Indeed, the spatial amplification rate is a vector like the 
wavenumber vector with magnitude 

(.a^ 2)1/2 (2.28) 

and angle 

i) = tan"'(-Bi/-ai) (2.29) 

with respect to the x axis.     The amplification rate 
selection is left for future consideration. 

is at  this  point a free parameter,   and its 

For the special boundary layers to be considered in this work (see p. 5), we define a spatial wave to 
be amplified or damped according to whether its amplitude increases or decreases in the x direction. 
Therefore,   the  three  possible oases which correspond to Eq.   (2.20)  are: 

-a^ <  0 damped wave , 

0      neutral wave , (2.30) 

-a. > 0       amplified wave  . 

2.3.3 Relation between temporal and spatial theories 

A laminar boundary layer is a dispersive medium for the propagation of instability waves. That is, 
different frequencies propagate with different phase velocities, so that the individual harmonic 
components in a group of waves at one time will be dispersed (displaced) from each other at some later 
time. In a conservative system, where energy is not exchanged between the waves and the medium, an 
overall quantity such as the energy density or amplitude propagates with the group velocity. Furthermore, 
the group velocity can be considered a property of the individual waves, and to follow a particular normal 
mode we use the group velocity of that mode. Because of damping and amplification, instability waves in a 
boundary layer do not constitute a conservative system, and the group velocity is in general complex. 
However, some of the ideas of conservative systems are still useful. If we consider an observer moving at 
the group velocity of a normal mode, the wave in the moving frame of reference will appear to undergo 
temporal amplification, while in the frame at rest it undergoes spatial amplification. 
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Thus we can write 

d/dt = Cj,d/dx    , (2.31) 

where in this argument C^ is the magnitude of C^, the real part of the group velocity vector t:, and x is 
the coordinate in the direction of l^. Therefore, if c, is the temporal amplification rate, the spafial 
amplification rate in the direction parallel to C^  is immediately given to be 

-("i>g= V^r • (2.32) 

o .,7^.!.^''°^■^^'" °^, converting a temporal to a spatial amplification rate was first encountered by 
Sohlichting (1933a), who used the two-dimensional version of Eq. (2.32) without comment. The same 
relation was also used later by Lees (1952), and Justified on intuitive grounds, but the first 
mathematical derivation was given by Gaster (1962) for the 2D case, and the relation bears his name. 
Caster's derivation is straightforward and can be generalized to three dimensions with the result given 
above in Eq. (2.32). It is essential to note that the Gaster relation is only an approximation that is 
valid for small amplification rates. Within the approximation, the frequency and wavenumber of the 
spatial wave are the same as for the temporal wave. If we use the complex group velocity in the above 
derivation, we arrive at the separate transformations for constant frequency and constant wavenumber 
obtained by Nayfeh and Padhye (1979) from another point of view. In this approach, Eq. (2.32) corresponds 
to a transformation of constant wavenumber. 

vv, ^ "®/^" also make use of Eq. (2.32) to arrive at a useful result for spatial waves. The same argument 
that  led to Eq.  (2.32)  also applies to a component  of the group velocity.    Therefore, 

-(«i)    = VCr°°'^('^-*r)   < (2.33) 

where -{a.^)T  is the spatial amplification rate in the arbitrary direction iji.  The quantity d,  is the real 
part of the complex group velocity angle $ defined by '' 

Cjj = C COS.), ,  0^ = 0 sincj, , (2.311) 

where C^^ and C^ are the complex x and z components of C, and C is the complex magnitude of C. Eliminating 
^i_/Cj,  by Eq. (2.32), we arrive at * 

(aj)_ = (a^)g/oos(v; - <t'^) . (2.35) 

This relation, which may appear rather obvious, is not a general relation valid for two arbitrary angles 
It IS only valid when one of the two angles is <P^. When both angles are arbitrary, a more complicated 
relation exists and has been derived by Nayfeh and Padhye (1979). There is also a small change in 5 
unless the group-velocity angle is real. We might close this subject by noting that while the various 
Nayfeh-Fadhye transformation formulas use the complex group-velocity, they too are not exact because the 
group velocity is considered to be constant in the transformation. We recommend to the interested reader 
to examine the instructive numerical examples given by Nayfeh and Padhye. 

2,l^    Reduction to fourth-order system 

Equations (2.7)  constitute a sixth-order system for the variables u,  ^,   «,   g,   DQ,  DW,   as can be shown 
by rewriting them as six first-order equations.    This system may be reduced to fourth order for the 
determination of eigenvalues.    One approach is to multiply Eq. (2.7a) by  a and Eq. (2.7c) by fi  and add 
and then multiply Eq. (2.7c) by a  and Eq. (2.7a) by 3  and subtract, to arrive at the following system of 
equations for the variables au+6w,  v,   aw-gQ,  and p: 

i(aU+6W-<o)(au+ew)  +  (aDU-H3DW)? = -i(a2+e2)5 + i [D2 _  (a.^^^)}(.aGi + g w),                      (2.36a) 

i(aU+eW-a))v    =  -Dp + g [D^ -  {a^+Q^):iv    , (2.36b) 

i(aU+ew-ai)(aw-eC)+  (ctDW-BDU)v =   | [D^  - ia^+&^ma<i-&n)     , (2.36c) 

i(aQ.Sw) + Dv = 0    , (2.36d) 

where Eqs. (2.7b) and (2.7d) have been duplicated for convenience as Eqs. (2.36b) and (2.36d). The point 
to note^is that Eqs. (2.36a), (2.36b) and (2.36d) are a fourth-order system for the dependent variables 
au+gw, y and p. The fourth variable of this system is aDu+@Dv5. The dependent variable a «-6Q appears only 
in Eq. (2.36c). Therefore, we may determine the eigenvalues from the fourth-order system, and if 
subsequently the eigenfunotlons u and w are needed, they are obtained by solving the second-order equation 
(2.36c). 

2.H.1    Transformations to 2D equations - temporal theory 

The above equations are  the ones  that we will use,   but they also offer a basis to discuss some 
transformations  that  have  been used in  the  past.     If a   and   6  are real,   the  interpretation  of   the 
equations  is  evident.     Equation  (2.36a)  is  the  momentum  equation in the direction parallel  to t,   and Eq 
(2.360) is the momentum equation in the direction normal to k in the x,z plane.    Indeed, if we use the 
transformations 



i(au-u)^ -Dg + 1 [D^ - 5^]^^ 

i(aU-oj)w + DW^ = 1 [D2 - a2]w 

lau + D^ = 0     , 

5u=aU+ew    , 5tf=aW--eu    , (2.37a) 

au=ciu+ew    , aw=afi-pa    , (2.37b) 

52=„2+g2    ^ (2.37C) 

and leave co,   R,  ^ and w unchanged,  Eqs.   (2.36)  become 

i(au-a))S + DU^ = laP + i- [D^ - a^^u    , (2.38a) 

(2.38b) 

(2.380) 

(2.38d) 

These transformed equations are of the form of Eqs. (2.7) for a two-dimensional wave (B=0) in a two- 
dimensional boundary layer (W=0) except for the presence of Eq. (2.380). We may observe from Eq. (2.7o) 
that even with 3 = 0, a w velocity component will exist whenever there is a W because of the vorticity 

production term DWv. 

Thus in a 3D boundary layer with velocity profiles (U,W) at Reynolds number R, the eigenvalues of an 
oblique temporal wave can be obtained from the eigenvalues of a 2D wave of the same frequency in a 2D 
boundary layer at the same Reynolds number with the velocity profile of the 3D boundary layer in the 
direction of the wavenumber vector. The key result that it is the latter velocity profile that governs 
the instability was obtained by Stuart [Gregory et al. (1955)] in his classic study of the stability of 
three-dimensional boundary layers, and by Dunn and Lin (1955) [see also Lin (1955)] in their study of the 
stability of compressible boundary layers. We shall refer to this velocity profile as the directional 

profile. 

A slightly different transformation was employed by Squire (1933) and bears his name. Squire's 
original transformation was for a 2D boundary layer and the Orr-Sommerfeld equation (see Section 2.5.1), 
but a generalization valid for a 3D boundary layer is 

,   W = W - U tani|; , (2.39a) 

,   w = (5 - u tanip , (2.39b) 

3/5 =6j/a  , 5B = aR .                                (2.39c) 

v/a  = v/a . (2.39d) 

When Eqs. (2.39) are substituted into Eqs. (2.36), the resultant equations are the same as Eqs. (2.38) 
except that oj, R, v and p are replaced by the corresponding tilde quantities. Thus the transformed 
equations, except for the w equation which does not enter the eigenvalue problem, are again in 2D form, 
but now the Reynolds number has also been transformed to the new coordinate system. This transformation 
relates the eigenvalues of an oblique temporal wave of frequency oj in a 3D boundary layer with velocity 
profiles (U,W) at Reynolds number R to a 2D wave of frequency a)/co3i|j in a 2D boundary layer at Reynolds 
number Rcosi[; with velocity profile U+Wtani|j. It can be interpreted as the same rotation of coordinates as 
in the transformation of Eq. (2.37) plus the redefinition of the reference velocity from U* to Uj.'costI'. 

For a 3D boundary layer, the generalized Squire transformation is merely a different way of doing 
what has already been accomplished by Eqs^ (2.36). However, for a two-dimensional boundary layer (W=0), 
which was the case considered by Squire, U = U and the dimensionless velocity profile is unchanged by the 
transformation. This means that numerical stability results for oblique temporal waves can be immediately 
obtained from known results for 2D waves in the same velocity profile. Furthermore, since R = RcosiJ', the 
smallest Reynolds number at which a wave of any frequency becomes unstable (minimum critical Reynolds 
number) must always occur for a 2D wave. This is the celebrated Squire theorem. It applies only to the 
minimum critical Reynolds number and not to the critical Reynolds number of a particular frequency, for 
which instability may well occur first for an oblique wave. It should also be noted that the theorem 
applies only to a self-similar boundary layer where the velocity profile is independent of R. 

2.H.2 Transformations to 2D equations - spatial theory 

When a and 3 are complex, the interpretation of the transformation equations (2.37) as a rotation 
of coordinates is lost, because the transformed velocity profiles are complex. There is one exception, 
however. In general, the quantity a/a, which for a temporal wave is cosii), is complex. However^ if a^^s 
a /3 , that is if the spatial amplification rate vector is parallel to the wavenumber vector, a/ais still 
rea/and equal to cosip. Thus it would appear that the eigenvalues of a spatial wave could still be 
calculated from the 2D equations in the tilde coordinates. Unfortunately, this expectation is not 

correct. When a and 3 are real, 

a = 5 oosip , (2.40) 

but there is no justification for applying Eq.  (2.it0) separately to the real and imaginary parts of a 
complex a when_ a/a is  complex.     We are able,   however,   to derive the correct transformation rule from Eq. 
(2.35).     Withip=i(;    and   5^   =   (a^)   , 

(-aj^)g = -Sj^ cos( i(j - ct)j.)     , (2.ll1a) 

and with   i|; = 0, 

u = U + W tani|; 

u = u + w tanijj 

a  = a2 -3^    , 

P/S' 2   . p/l2     _ 
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Eliminating (-"i)g.  we obtain 

"i =  (-ai)g/oos<f 

-Oij^  =  -oij_  oos( ip ■ |)j,)/COS(tij, 

(2.l»1b) 

(2.110) 

Consequently, Eq. (2.40) can be used for a. only when the real part of the group-velocity angle is zero. 
There is also a small shift in the wavenumber vector whenever (J)j i 0. 

An alternative procedure for spatial waves is to use the equations that result from the 
transformations of Eq. (2.39), but to not invoke Eq. (2.t0) when a/ais complex. The quantities R and S 
are complex, as are D and W for a 3D boundary layer, but this causes no difficulty in a numerical 
solution. Such a procedure, which amounts to a generalized complex Squire transformation, was 
incorporated into the JPL viscous stability code VSTAB/VSP. The approach with Eqs. (2.36), which has the 
advantage that no transformations are needed in determining the eigenvalues, is used in the newer JPL 
stability codes VSTAB/3D, VSTAB/AF and SFREQ/EV. It should be noted that even in the spatial theory, the 
governing real  velocity profile  is the profile in the direction of ic. 

2.5    Special forms of the stability equations 

2.5.1    Orr-Sommerfeld equation 

A single  fourth-order  equation can be derived from Eqs.   (2.36)  by eliminating aii+gw from Eq.   (2.36a) 
by (2.36d),   and,   after differentiation eliminating Dp by (2.36b).     The  result  is 

[D2 _  (a2+e2)-]2^ ^ iR{(an+eW-a))[D2 -  (a^+g^)]  _  (oD^U+gD^W)} ^    , 

with the boundary conditions 

(2.42) 

v(0) = 0,   Dv(0) = 0 , 

v(y) ^ 0,   Dv(y) * 0 as y^ (2.43) 

When W = 0, Eq. (2.42) reduces to the equation for a 2D boundary layer obtained by Squire (1933). When in 
addition g=0, 

(D^ - a2)2 ^ = iR[(aU-aj)(D2 - a2) - aD^U]^ . (2.44) 

This is the Orr-Sommerfeld equation and is the basis for most of the work that has been done in 
incompressible stability theory. It is often derived from the vorticity equation, in which case ^ is the 
eigenfunction of the stream function. The Orr-Sommerfeld equation is valid for a two-dimensional wave in 
a two-dimensional boundary layer. However, the generalized Squire transformation, Eq. (2.39), reduces the 
3D equation (2.42) to Eq. (2.44) in the tilde coordinates. Consequently, for 3D boundary layers all 
oblique temporal waves can be obtained by solving a 2D problem for the renormalized velocity profile in 
the direction of the wavenumber vector, and when the boundary layer is two-dimensional, for the same 
velocity profile. The 2D Orr-Sommerfeld equation and the same transformation can_also be used for spatial 
oblique waves, but in this case R is complex, and for a 3D boundary layer so is U. The invisoid form of 
the complex Squire transformation was used by Caster and Davey (1968) for an unbounded 2D shear flow, and 
the complete viscous form by Caster (1975) for a Blasius boundary layer. When one is not trying to make 
use of previously computed two-dimensional eigenvalues, it is perhaps simpler to use Eq. (2.42) to 
calculate 3D eigenvalues as needed,   thus avoiding transformations in R and (o. 

2.5.2    System of first-order equations 

There are a number of stability problems that cannot be reduced to a fourth-order system, and 
therefore are not governed by the Orr-Sommerfeld equation. A more flexible approach is to work from the 
outset with a system of first-order equations.    With the definitions 

Zy  = afl aDu + SDw,  Zg =  V,   Z^ =  5  , 

Z5 = aw - 3Q, Zg = aDw - gDu , 

Eqs. (2.36) can be written as six first-order equations: 

(2.45) 

The boundary conditions are 

DZ^ = Zg , 

DZg = [a2+e2^iR(aU+eW-^)]Z, + R(aDU+eDW)Z, + i.Uo?--y^)Z^   , 

DZ-, 

DZ 

DZc 

-iZ 1 ' 

H  = -(1/K)Z2 - [i(aU+eW-<o) + (a'^+g'^)/R] Z3 , 

'6 • 

DZg = (aDW-3DU)RZ3+ [a'^+3'^+iR(aU-t<3W-u) JZj 

(2.46a) 

(2.46b) 

(2.46c) 

(2.46d) 

(2.46e) 

(2.46f) 

Z^(0) = 0 

Zi(y) ^ 0 

Z3(0) = 0 , 

Z3(y) -^ 0 , 

Z^(0) 

Z5(y) ^ 0 as y -> 00 . (2.47) 
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The fact that the first four of Eqs. (2.ll6) do not contain Zg or Zg confirms that eigenvalues can be 
obtained from a fourth-order system even though the stability equations constitute a sixth-order system. 
It is only the determination of all the eigenfunetions that requires the solution of the full sixth-order 
system. The above formulation is applicable when a and B are complex as well as real, and to 3D as well 
as 2D boundary layers. Only the transformations of Eq. (2.37b) enter in this formulation, and then only 
in the definitions of the dependent variables Z„ Zo, Zg and Zg. No transformations are involved in the 
determination of the eigenvalues. Another point to note is that only the first derivatives of U and W 
appear in Eqs. (2.t6) instead of the second derivatives which are present in the Orr-Sommerfeld equation. 

2.5.3 Uniform mean flow 

In the freestream, the mean flow is uniform and Eqs. (2.46) have constant coefficients. Therefore, 
the solutions are of the form 

z(^^(y) = k^^hxpiX^y)   , (i=1,6) , (2.48) 

j(^) are the six-component solution vectors, the X^ are the characteristic values (the term 
: is reserved for the a , g , oj which satisfy the dispersion relation), and the A^-"-' are the six- 

where the Z^ 
eigenvalue is reserved for the a, 
component characteristic vectors [not to be confused with the wave amplitude A in Eq. (2.12)].  The 
characteristic values occur in pairs, and are easily found to be 

^^ 2 = +("2+32)1/2 ^ (2.49a) 

Xg 1, = +[a2+B2^iH(aU^+BW^-a))]1/2 ^                (2.49b) 

S,6 = ^3,4 . (2.49c) 

where U^ and W, are the freestream values of U(y) and W(y). Only the upper signs satisfy the boundary 
conditions at y^- '».  The components of the characteristic vector A^^' are 

) = -i(a2+32)1/2 ^ (2.50a) 

) = i(a2+g2) , (2.50b) 

^ = 1 , (2.50c) 

) = i(aU^+BWi-a))/(a2+B2)1/2 , (2.50d) 

A( 

4 

A( 

A ) = 0 ,   A^J) = 0 . (2.50e,f) ( 
"5    ' '   "6 

For real a , g and &) this solution Is the linearized potential flow over a wavy wall moving in the 
direction of the wavenumber vector with the phase velocity u/k. It can be called the inviscid solution, 
although this designation is valid only in the freestream. 

The components of the characteristic vector A*'-" are 

A(^3) = 1 , (2.51a) 

A^3) = [a2+g2+ijj(ctu^+B;,^_a,)]1/2 ^ (2.51b) 

A^3) _ l/[a2+32_iii(ao^+gvi,,-to)]1''2 ^ (2.51c) 

k[^'>  = 0 ,  A^3) = 0 ,  A^g^) = 0 . C2.51d,e,f) 

This solution represents a viscous wave and can be called the first viscous solution. 

The ohciracteristic vector A^^' is a second viscous solution, and its components are 

(2.52a,b) 

(2.52o,d) 

(2.52e) 

A^gS) = -[a2+e2+iR(au,+3w,-a))]1/2 . (2.52f) 

The three linearly independent solutions A'^', A^^) and A'^^ are the key to the numerical method that we 
will use to obtain the eigenvalues, as they provide the initial conditions for the numerical integration. 

We can observe that the second viscous solution can also be valid in the boundary layer as a pure 
mode if Z., Z^, and Zj, are all zero. This follows from Eqs. (2.46). In the notation of Eq. (2.37b), the 
only non-zero flow variable, Zg, is aw, where in the temporal theory w is the eigenfunction of the 
fluctuation velocity normal to k. But since n= 9w/9x - 3u/82 is the fluctuation vorticity component 
normal to the wall, Zg is also -ifi, where T\ is the eigenf unction of n. This interpretation is valid for 
both the temporal and spatial theories. The eigensolutions of the second-order equation (2.46f) with Zo = 
0 satisfy the boundary condition ri(0) = 0 and give the vorticity modes in the boundary layer. These moaes 
were first considered by Squire (1933), and were proven by him to be always stable. Recently it was shown 
by Herbert (1983a,1983b) that the Squire modes provide an important mechanism of subharmonic secondary 
instability at low, but finite, amplitudes of a primary 2D instability wave. 

A(5)   =  0  , A(5)   =  0 

A(5)   =  0  , A(5) = 0 , 

A(5)  =  1   . 
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2.6    Wave propagation in a growing boundary layer 

We have already discussed some aspects of this problem in Section 2.2, and we have chosen to use the 
quasi-parallel rather than the non-parallel theory. In the quasi-parallel theory, the normal-mode 
solutions are of the form 

u(x,y,z,t)  = Aou(y;x)exp[i0(x,y,z,t)]   , (2.53) 

with similar expressions for the other flow variables. The slowly varying amplitude A(x) of the non- 
parallel  solution Eq.  (2.12)  has been set equal  to the constant A^,   and 

0 (x,2,t)  =J a(x)dx + eCx^z - aj(x^)t  . (2.5i() 

Equation (2.54) is the same as Eq. (2.13). We have left 3 and o) as functions of the slow scale x. in 
order to make it clear that 30/3x =a, just as for strictly parallel flow. The eigenvalues a, 6 aid to 
satisfy the local dispersion relation Eq. (2.14), and the eigenfunction u(y;x) is also a slowly varying 
function of x. Consequently, at each x a different eigenvalue problem has to be solved because of the 
change in the boundary-layer thickness, or velocity profiles, or, as is usually the case, both. The 
problem we must resolve is how to "connect" the possible eigenvalues at each x so that they represent a 
continuous wave train propagating through the growing boundary layer. 

In a steady boundary layer, which is the only kind that we shall consider, the dimensional frequency 
of a normal mode is constant. For a 2D wave in a 2D boundary layer, (3 = 0, and the complex wavenumber a 
in the spatial theory, or the real wavenumber a and the imaginary part of the frequency oj. in the 
temporal theory, are obtained as eigenvalues for the local boundary-layer profiles. The only problem here 
is the relatively minor one of calculating the wave amplitude as a function of x from the amplification 
rate, and we shall discuss this in Section 2.6.2. 

2.6.1 Spanwise wavenumber 

When the wave is oblique,g ^ 0, and it is not obvious how to proceed. According to the dispersion 
relation, a is a function of g as well as of x. How do we choose B at each x7 The answer is provided 
by the same procedure as used in conservative wave theory. When we differentiate Eq. (2.54) with respect 
to X (not x.) and z, we obtain 

30/3x = a, 36/3z = g, (2.55^) 

grad0  = k^ , (2.55b) 

where k^, is the gpmplex vector wavenumber. Thus it follows directly that 

^ x\- 0   , (2.55c) 

and k^ is irrotational. This condition is a generalization to a nonconservative system of the well-known 
result for the real wavenumber vector in conservative kinematic wave theory. 

In the boundary layers we will consider here, the mean flow is independent of z. Consequently if we 
restrict ourselves to spatial waves of constant 3 at the initial x, they can be represented by a single 
normal mode because the eigenvalue a will also be independent of z. Therefore, according to Eq (2 55c^ 
the sought-after downstream condition on 3 is -o    M ^ .^^ 

3 = const. (2.56) 

One caution is that if the reference length L* is itself a function of x, as it will be if L" - S* for 
example,   the argument has to be  slightly modified and Eq.   (2.56) refers to  g* rather than to 3 . 

It still remains to specify the initial value of g . Naturally occurring instability waves in a 
boundary layer will be a superposition of normal modes, with a spectrum over both oj and g that will 
depend on the particular origin of the waves. It is probably only in a controlled experiment with a 
suitable wavemaker that a single normal mode can be excited. For example, the vibrating ribbon first used 
by Schubauer and Skramstad (194?) in their celebrated experiment excites a spatial 2D normal mode with the 
frequency of the ribbon. It is also possible to conceive of wavemakers that excite single oblique normal 
modes in boundary layers which are independent of z. Such normal modes will have an Initial 3 which 
matches that of the wavemaker, and, because the wave can grow only in x, the initial 3. must b''e zero 
These normal modes are well-suited for use in stability calculations for the estimation of ^he location of 
transition. In the calculations, 3^ is assigned as a parameter, g^ is zero, and Eq. (2.56) controls the 
downstream values of g^. Not only do these normal modes represent physical waves that can be produced by 
a suitable wavemaker, but they are also convenient to use in all calculations of normal modes, such as 
transition prediction, where we are Interested in the largest possible growth of any normal mode, or the 
point-source calculations of Section 7. In earlier work on two-dimensional planar boundary layers, some 
results from which will appear in later Sections, the angle ip was chosen as the parameter to hold 
constant, rather than g^, as the wave propagates downstream. Although a* is nearly constant in such 
boundary layers, it changes enough so that the assumption of constant ,p is not equivalent to Eg (2 56) 
In the work on three-dimensional boundary layers presented in Sections 13 and 14, Eq. (2.56) is aoclied to 
the spanwise wavenumbers, but the direction of the spatial amplification rate is either parallel to the 
local potential  flow,  or,   occasionally,   in the direction of the real part of the group-velocity angle. 

2.6.2 Some useful formulas 

It is worthwhile at this point to list some formulas that will be of use for stability calculations 
in growing boundary layers. Only 2D boundary layers are considered here; 3D boundary layers are taken un 
separately in Part C.  First, we choose as the length scale, ^ "^ 
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L* =  [vV/U*(x*)]l/2  , (2.57) 

which is the usual length scale of the Falkner-Skan family of boundary layers, and of many nonsimilar 
boundary-layer solutions. Other length scales that have been used are the boundary layer thickness, the 
displacement thickness, and the inverse unit Reynolds number. The velocity scale is U-|^(x ), the local 
velocity at the edge of the boundary layer. With these choices, the Reynolds number in the stability 
equations is 

R = u"(x*)  L"/V* =  (U*xVv*)1''2 ^  Re1/2    ^ (2.58) 

The dimensionless coordinate normal to the wall, 

y = (y*/x*)R , (2.59) 

is the usual independent variable of boundary-layer theory. 

The dimensionless quantities a , 0 , co, R and y referenced to L may be converted to other length 
scales, such as displacement or momentum thickness, by multiplying by the dimensionless (with respect to 
L*) displacement or momentum thickness. The latter quantities are almost always obtained as part of a 
boundary-layer calculation. To convert a, 3 and co to dimensionless quantities based on the inverse unit 
Reynolds number v /U , it is only necessary to divide a, 0 and oi by R. 

The dimensional circular frequency w of a normal mode is constant as the wave travels downstream, 
but the dimensionless frequency 

m = OJ'L'/U* , (2.59) 

is a function of x. It has become almost standard to use 

F = co"v"/U*2 = oj/R (2.60) 

in place of to as the dimensionless frequency. However, F is also a function of x for anything but a 
flat-plate boundary layer. For the Falkner-Skan family of velocity profiles, the dimensionless velocity 
gradient, 

m =   (x"/U*)(dU*/dx*)   , (2.61) 

is constant and related to the usual Hartree parameter gj^ (the subscript h is used to avoid confusion with 
the wavenumber component B), by 

gjj = 2m/(m+1) . (2.62) 

The variable dimensionless frequency for constant o) is 

F(R) = F(Ro)(Ro/R)'*'°/("'+1) , (2.63) 

where RQ is the Reynolds number at the initial x station. When a stability code can handle several 
frequencies at once, it is more convenient to use some fixed velocity as the reference velocity so that F 
will remain constant for each frequency. For the nonsimilar boundary layers on airfoils, the JPL 
stability codes use the velocity in the undisturbed freestream. 

With L* a function of x*, the irrotationality condition Eq. (2.56) applies Jo the dimensional 
spanwise wavenumber. For the Falkner-Skan family, the dimensionless B for constant g is given by 

B(R)/g(Ro) = (R/Ro)^!-"'^''^^'-"'^ . (2.6K) 

We note that for a Blasius boundary layer (m=0), g increases linearly with R. The dimensional wavenumber 
a is almost, but not quite, constant, because there is a small increase in the phase velocity with 
increasing R. As a result, the wave angle i^ increases as the wave travels downstream. This increase is 
at most a few degrees for a planar boundary layer. However, on an axisymmetric body, it is the 
circumferential wavenumber per radian that is constant. Thus, neglecting the small decrease in a , tanijj 
is inversely proportional to the radius. For instance, on a cone, where the radius is increasing, an 
oblique wave is rapidly converted to a nearly 2D wave as it travels downstream; on a body with decreasing 
radius, the effect is reversed. 

2.6.3 Wave amplitude 

In the quasi-parallel theory, the amplitude ratio of a spatial normal mode of frequency oi with g^ = 
0 is obtained from the imaginary part of the phase function Eq. (2.5t): 

ln(A/Ao) = -y a*dx* (2.65) 

0 

in accord with Eq. (2.27). Here AQ is the amplitude at the initial station XQ, and the integral ^a 
evaluated with constant oi* and g . If x„ is the start of the instability region for the frequency oj , 
ln(A/An) is the N factor that is the basis of the e'' method of transition prediction. As discussed in 
Section 2.2, A may represent any flow variable at any y location. It may be helpful to think of A as, 
say, the maximum value of [ujin the boundary layer, as this is a quantity that can be determined 
experimentally.  Along with the amplitude, the time-independent phase relative to the initial phase at 
X ,z is . 
0  0 X* 

X(x) - X(Xo) =/l°r'^x* + f^r (^'"^o^ * ^^'^^^ 
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The phase is a vital quantity In superposition calculations (Section 7), but otherwise it is usually not 
computed. 

For the Falkner-Skan family, the amplitude ratio in terms of R is 
.R 

InCA/Ag)  = -  [2/(m+1)] /" aj^dR  , (2.67) 

where the integrand a^ is caloulajfecj, as an eigenvalue with the F of Eq. (2.63) and the 6 of Eq. (2.61). 
For a nonsim^lar boundary layer, }J^{x ) is not an analytical function, and the integration has to be with 
respect to x .    A formula that is used in the JPL stability codes is 

ln(A/A„)  = -Yt^J     (a^/R)(U^/U^)dXj,  , (2.68) 

(Xc)g 
o' 

where a^ is based on Jihjp Igcal L j U™ is the velocity of the undisturbed freestreamj x is x*/c*, where of 
is the choji-d; R^. = U^c /v is the full chord Reynolds number; and the Integral is again evaluated for 
constant O)    and   3 . 

3.       INCOMPRESSIBLE DJVISCID THEORY 

The system of first-order equations (2.1)6), or the Orr-Sommerfeld equation in either 2D or 3D form, 
Eq. (2.12) or (2.44), governs the motion of linear waves at finite Reynolds numbers. With the highest 
derivative of ^ in the Orr-Sommerfeld equation multiplied by 1/R, which is usually a small quantity, it is 
apparent that mathematical and numerical methods of some complexity are required to obtain the eigenvalues 
and eigenfunctions. On the other hand, if viscosity is considered to act only in the establishment of the 
mean flow, but to have a negligible effect on the instability waves, the equations take on a much simpler 
form.    For example,  the 2D Orr-Sommerfeld equation reduces to 

[(an-a))(D^-a2)  - aD^U]^ = 0    . (3.1) 

This is the fundamental equation of the inviscid stability theory, and is usually referred to as the 
Rayleigh equation.    It is of second order and so only the two boundary conditions 

v(0)  = 0  ,      0(y) ->■   0 as y + ■» , (3.2) 

can be satisfied. The normal velocity at the wall is zero, but the no slip condition is not satisfied. 

The Inviscid theory has dealt largely with 2D temporal waves. Since all of the essential ideas are 
included within this framework, we shall adopt the same procedure in this Section, The Rayleigh equation 
(3.1) has a singularity at y = y^, where aU = oj. This singularity is of great importance in the theory, 
and is called the critical layer, or critical point. It does not occur in the Orr-Sommerfeld equation, 
but even so the Rayleigh equation is simpler to work with than the Orr-Sommerfeld equation, and an 
extensive inviscid stability theory has been developed over the past 100 years. The early work was mainly 
by Rayleigh (1880,1887,1892,1895,1913), but a great number of authors have made contributions in more 
recent times. An excellent review of the subject may be found in the article by Drazin and Howard (1966). 
Only those aspects of the theory which are necessary for a general understanding, and have relevance to 
boundary-layer flows, will be taken up In this Section. We also restrict ourselves to boundary layers 
with monotonio velocity profiles. These profiles have only a single critical layer. We defer until 
Section 12 the discussion of the important directional velocity profiles of 3D boundary layers which have 
two critical layers. 

The inviscid theory has been used for two purposes. One is to provide two of the four independent 
solutions that are needed in the asymptotic viscous theory. The other is as an inviscid stability theory 
per se. We shall not discuss the asymptotic theory, so it is only the second use that is of interest 
here. Not many numerical results have been worked out from the inviscid theory for incompressible 
boundary layers. However, one of the two chief instability mechanisms is Inviscid in nature, so that some 
knowledge of the theory is essential for an understanding of boundary-layer instability. The presentation 
here will also serve as a necessary prelude to compressible stability theory, where the inviscid theory 
has a larger role to play. 

3.1 Inflectional instability 

3.1.1 Some mathematical results 

There are a number of general mathematical results that can be established in the inviscid theory, in 
contrast to the viscous theory where few such results are known. We shall give two which demonstrate that 
no unstable or neutral temporal waves can exist unless the velocity profile has a point of inflection. 
The first result concerns unstable waves. If we multiply Eq. (3.1) by v , the complex conjugate of <}, and 
then subtract the complex conjugate of the resultant equation, we obtain 

D(v*D^-^Dv*) - 2iajj_D%jv|2/|aU - w|2= o . (3.3) 

The first term of Eq. (3.3) can be made more meaningful by relating it to the Reynolds stress, which, in 
dimensionless form, is 

2Tj/a 

(a/2iT)/ uv dx . (3.1)) 
0 

If we recall the necessity of first taking the real parts of u and v before multiplying, and make use of 
the continuity equation, we obtain 

DT = a)^D2u<v2>/|aU - ft) |^ , (3.5) 
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where (1/2) jv j^exp (Scoj^t) has been replaced by <v^>, the average over a wavelength of the square of the 
velocity fluctuation v. 

Eq. (3.5) is a special case of a formula derived by Foote and Lin (1950) [see also Lin (1951,1955)]. 
ii "        " "  ■ " 

!fO 
When Eq.   (3.5) is integrated from y = 0 to infinity,   the Reynolds stress at the wall and in the freestream 
is zero by the boundary conditions.     Therefore,   since D^U = 0 in the freestream. 

0). /(<v2>D2u/|aU - OJ [2)dy = 0   , (3.6) 

° 2 where K-ls the  dimensionless  boundary-layer thickness.     It follows  from  Eq.   (3.5)  that if Wj^ ^ 0,   D U must 
change sign somewhere in the interval 0<y<y..   Consequently,   it has  been proven that the velocity  profile 
must have a point of inflection for there to be an unstable wave.    This result was first obtained by 
Rayleigh.     Later,   Fjortoft  (1950)  strengthened  Rayleigh's  necessary  condition to  D U(U-Ug)  <  0   somewhere 
in the flow,   where U    is the mean velocity at the inflection point.    This condition is equivalent to 
requiring that the modulus of DU have a maximum for there to be instability.     It is always satisfied in a 
boundary  layer  with  an inflection  point,   because  DU * 0  as y-K» and  [DU| cannot only have a minimum.     It 
was subsequently proven by Tollmien (1935)  that for most  of the profiles which occur in boundary  layers, 
including  3D boundary  layers,   the condition D^U =  0  is also sufficient.     Another result of Rayleigh,   for 
which the proof will not be given, established that the phase velocity of an unstable wave always lies 
between the maximum  and minimum  values of U.     This result was later generalized by Howard (1961) into an 
elegant semicircle theorem which relates both Mj,/a and i^^/a to the maximum and minimum values of U. 

The second result concerns neutral waves. It follows from Eq. (3.5) that with coj^ = 0, the Reynolds 
stress must be constant everywhere except for a possible discontinuity at the critical layer y^. When Eq. 
(3.5) is integrated across the boundary layer, the only contribution to the integral comes from the 
immediate neighborhood of y^.    Hence, 

U(y^+0) 

x(y +0)-T(y^-O)  = -  (D2U/DU)„<V2> lim  / {oj./[(aU-u )^+<D^]}dU. (3.7) 

1        U(y^-O) 

The integration variable has been changed from y to U. In the limit of (o ^^ ^ 0, the integrand of Eq. (3.7) 
acts as a delta function, and the intgegral has a value of IT /a.  Consequently, 

T(yo+0)-T(y^-0) = (Ti/a)(D2u/DU)j,<v/>. (3.8) 

Since T (y.+O) and ^(yQ-O) are both zero by the boundary conditions, T> V^ must also be zero, and it has 
been proven that a wave of neutral stability can exist only when the velocity profile has a point of 
inflection. Furthermore, to /a = U^ and the phase velocity of a neutral wave is equal to the mean 
velocity at  the inflection point. 

The chief analytical feature of the Rayleigh equation (3.1) is the singularity ataU =a). Since cols 
in general complex, so is y . Of course the mean velocity U is real in the physical problem, but it may 
be analytically continued onto the complex plane by a power-series expansion of U or by some other method. 
Two approaches to obtaining analytical solutions of the inviscid equation are the power series in a used 
by Heisenberg (1924) and Lin (1945), and the method of Frobenius used by Tollmien (1929). The two 
solutions obtained by Tollmien are 

^■^(.y) = (y-yc)Pi(y-yc)    • (3.9a) 

V2(y) = PaCy-yc) + (.O^V/m)^(y-y^)?^(y-y^)loe{y-y^)  , (3.9b) 

Pl(y-yc)   =   1   +  (D^U/2DU)(,(y-yg)  +  (1/6)[D3u/DU)p + a2](y-yg)2 +   .... 

PjCy-yc)  = I  + [(D3U/2DU)Q -  (D'^U/DU'^)g + (1/2)a'^](y-y(,)'^ + ... 

The first solution is regular, but ^g ^^ "o*- ^" general regular near y^, because of the logarithmic term. 
However, for a neutral wave D^U^^ is zero, and in this one case ^2 ^^ ^^^°  regular. 

To summarize what we have learned in this section, for a velocity profile without an inflection 
point, (e.g., the Blasius boundary layer), there can be neither unstable nor neutral waves (save for the 
trivial solutiona= 0, o) = 0). When there is an inflection point, a neutral wave with a phase velocity 
equal to the mean velocity at the inflection point can exist, and in boundary layers unstable waves with 
phase velocities between 0 and 1 can and will exist. 

3.1.2 Physical interpretations 

The mathematical theory is complete in itself, and with the use of the Reynolds stress also makes the 
physical consequences of an inflection point clear. However, there have been attempts to formulate 
physical arguments that in some manner bring in the concept of negative stiffness, which is the way in 
which one usually thinks about unstable wave motions. The first of these was by Taylor (1915), and 
appeared as an addendum to a major paper in which he developed his vorticity transfer theory. He applied 
this theory to deriving an expression for the vertical transfer of disturbance momentum, which Immediately 
showed that if D% is of the same sign everywhere, the disturbance momentum can only increase or decrease 
everywhere, a situation incompatible with the inviscid boundary conditions. However, if D U changes sign, 
then momentum can be transferred from one place to another without affecting the boundaries, thus 
permitting instability. Later arguments made use of vorticity concepts. The most detailed is by Lin 
(1945,1955), and is supported by a considerable mathematical development. Lighthill (1963, P. 92) gives 
a very helpful presentation with three diagrams, and finally Gill (1965) has constructed an argument that 
makes use of Kelvin's (I88O) cat's eye diagram of the streamlines in the vicinity of an inflection point 
to demonstrate that only a maximum in DU can cause instability. All of these presentations are worth 

careful study. 

where 
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3.2 Numerical Integration 

The analytical methods are not adequate for producing numerical solutions of the Rayleigh equation 
except in certain special cases. Only direct numerical integration of Eq. (3.1) can produce solutions 
accurately and quickly for the great variety of velocity profiles encountered in practice. There are at 
least two methods available. In the first, which was developed by Conte and Miles (1959), the integration 
IS restricted to the real axis and is carried past the critical point by the Tollmien solutions. In the 
second method, which was developed by Zaat (1958), the solution is produced entirely by numerical 
integration, and the critical point is avoided by use of an indented contour in the complex plane. It is 
as easy to perform the numerical integration along such a contour as along the real axis, provided the 
analytic continuation of U away from the real axis is available. This approach, except for a difference 
in the method of analytic continuation, was used by Mack (1965a) to integrate the compressible inviscid 
equations. It was later extended to incompressible flow, and is incorporated into the JPL inviscid 
stability code ISTAB. 

For numerical integration, Eq. (3.1) is replaced by the two first-order equations for v and p which 
follow from Eqs. (2.36) when R ^": 

Dv = [c(/(aU - a))](DUv+ia5) ,                        (3.11a) 

Dp = -i(aU-co)v . (3.lib) 

The solutions in the freestream, where U = 1 and DU = 0, are 

^ = exp(- ay) , (3.12a) 

5 = -i(1-a)/a)exp[-ay] , (3.12b) 

where we have chosen the normalization to agree with Eqs. (2.50). These expressions provide the initial 
values for the numerical integration to start at some y = y^ >y. For chosen values of a and oi + iia ., 
the integration proceeds from y^ to the wall along the real y axis and an indented rectangular contour 
around the critical point when necessary. The velocity U is continued on to the indented contour by a 
power-series expansion in y - y^. The necessary derivatives of U are obtained from the boundary-layer 
equations. A Newton-Raphson search procedure, in which any two of a, oj , to. are perturbed, is used to 
find the eigenvalues, i.e., an a and oj + lio^ for which the boundary condition v(0) = 0 is satisfied. If 
a is held constant, then the Cauchy-Riemann equations can be used to eliminate one perturbation because 
the function i'i(a) in the dispersion relation is analytic. 

3.3 Amplified and damped inviscid waves 

3.3.1 Amplified and damped solutions as complex conjugates 

In the use of the inviscid theory in the asymptotic viscous theory, the choice of the branch of the 
logarithm in Eq. (3.9b) constitutes a major problem. This same difficulty also shows up in the inviscid 
theory itself, but in a much less obvious manner. Since DU > 0 for the type of boundary layer we are 
considering in this Section, it follows that for an amplified wave (OJ. > o) the critical layer lies above 
the real y axis [(yj,)i > 0]; for a damped wave (co^ < 0) it is below the real axis [(y ). < 0]. For a 
neutral wave (OJ^ = 0), the critical layer is on the real axis, but since D^U. = 0 the logarithmic term 
drops out of Eq. ( 3.9 b) and the solution is regular. With the critical layer located off the real axis 
for amplified and damped waves, it would seem that there is nothing to hinder integration along the real 
axis. Indeed, it can be seen by manipulating the inviscid equation (3.1) that if v + iv. is a solution 
for w^ + ioj^, then v,. - ivj_ is a solution for (o^, - ico^. Thus amplified and damped solutions are complex 
conjugates, and the existence of one implies the existence of the other. From this point of view the 
criterion for instability is that oj is complex, and the only stability is neutral stability with OJ Veal. 
Since Eq. (3.6) applies for (o^^ < 0 as well as for w > o, neither amplified nor damped waves can exist 
unless there is an inflection point. The Blasius Boundary layer has no inflection point (except at y = 
0), and according to this argument no inviscid waves are possible, amplified, damped or neutral (except 
forar 0, 0) = 0). But viscous solutions certainly exist; what happens to these solutions in the limit as 
R ->•<»? 

3.3.2 Amplified and damped solutions as R -^<» limit of viscous solutions 

The clarification of this point is due to Lin (1945), who showed that if the inviscid solutions are 
regarded as the infinite Reynolds limit of viscous solutions, a consistent inviscid theory can be 
constructed in which damped solutions exist that are not the complex conjugates of amplified solutions. 
To achieve this result, integration along the real axis is abandoned for damped waves. Instead, the path 
of integration is taken ypder the singularity just as it is for the inviscid solutions that are used in 
the asymptotic viscous theory, and ln(y - y^) = mjy - y |- ITI for y < y„. For damped waves, the effect 
of viscosity is present even in the limit R ^ » , and a completely inviscid solution cannot be valid along 
the entire real axis. Lin's arguments were physical and heuristic, but a rigorous justification was Kiven 
by Wasow (1918). 

It is also possible to arrive at Lin's result from a strictly numerical approach. In Section 3.2, no 
mention was made of how to indent the contour of integration. The two possibilities are shown in Fig 
^.lV ^°'' ^"/"Viscid neutral solution (oj^ = o), v is purely imaginary and p is real. It makes no 
difference if the contour is indented below the real axis, as in Fig. 3.1a, or above, as in Fig. 3 lb 
The same eigenvalue a is obtained in either case. If OJ. ^ 0, the integration can be restricted to the 
real axis. However, unless D-^U = 0 somewhere in the boundary layer, there are no amplified solutions, or 
their complex conjugates the damped solutions. But if we use contour (a) for damped waves, and contour 
(b) for amplified waves, both solutions exist even with D^u ,1 0. Some eigenvalues computed for the 
Blasius velocity profile are given in Table 3.1, where the eigenvalues have been made dimenisionless by 
reference to L [Eq. (2.57)], which enters the inviscid problem through the boundary-layer similarity 
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variable y = y*/L*. As can be verified from Eqs. (3,11), the solutions with oij, - ioij^ and contour (a) are 
related to the solutions with (Hj, + iui^  and contour (b) by 

?(a) ^ i^(a) , ^(b) _ i^(b) ^ 

(3 -IS) 
g(a) ^ ip(a) . _g(b) ^ ig(b)  _ 

Table 3.1 Invisoid eigenvalues of Blasius velocity profile 
computed with Indented contours. 

Contour 

(a) 0.128 0.0333 -2.33 
(b) 0.128 0.0333 2.33 
(a) 0.180 0.0580 -6.80 
(b) 0.180 0.0580 6.80 

Which option do we pick, (a) or (b)? Since the neutral-stability curve for the Blasius profile is of 
the type shown in Fig. 1.1a, waves of all wavenumbers are damped in the limit R+ <». Consequently, if the 
inviscid solutions are required to be the R->-» limit of viscous solutions, it is evident that contour (a) 
must be used, just as in the asymptotic theory and in agreement with Lin. Without an inflection point, 
there are no invisoid amplified solutions. For a velocity profile with D^U = 0 at y^, where the subscript 
s refers to the inflection point, both amplified and damped waves exist for each contour, unlike the 
Blasius case. The neutral wavenumber is a^, and can be obtained with either contour. With contour (a), 
the wavenumbers of the amplified waves are located below ct^, and the wavenumbers of the damped waves are 
located above a ; contour (b) gives the opposite results. Comparison with the viscous neutral-stability 
curve, which is of the type shown in Fig. 1.1b, shows that contour (b) must be rejected in this case also. 

The damped solutions with contour (a) do not exist everywhere on the real axis. According to Lin 
(1955, p. 136), there is an interval of the real axis in the vicinity of the critical layer where 
viscosity will silways have an effect even in the limit of R^ ", and where the invisoid solution is not a 
valid asymptotic approximation to the viscous solution. In the final paragraph of his book, Lin remarked 
that in this interval the viscous solution has an oscillatory behavior. This remark was confirmed 
analytically by Tatsumi and Gotoh (1971), and verified numerically by Davey (1981) at an extremely high 
Reynolds number using the compound matrix method. 

As a numerical example of damped invisoid eigenvalues, Fig. 3.2 gives -o)^, the temporal damping rate, 
as a function of a for the Blasius velocity profile. The calculation was performed along an indented 
contour of type (a). The inviscid damping rates are, for the most part, much larger than the viscous 
amplification rates. That damped inviscid eigenvalues calculated with a type (a) contour are the R^-"" 
limit of viscous eigenvalues was confirmed numerically by Davey in the paper mentioned in the preceding 
paragraph. For a = 0.179, the inviscid eigenvalue is w/a = 0.32126-0.036711; the viscous eigenvalue 
computed by Davey at R = 1 x 10° is to/c(= 0.32166-0.036291. 

H.   NUMERICAL TECHNIQUES 

4.1 Types of methods 

Since the early 1960's, the asymptotic theories developed by Tollmien (1929) and Lin (1915) have been 
largely superseded as a means of producing numerical results in favor of direct solutions of the governing 
differential equations on a digital computer. The numerical methods that have been employed fall roughly 
into three categories: (1) finite-difference methods, used first by Thomas (1953) in his pioneering 
numerical work on plane Poiseuille flow, and later by Kurtz (1961), Osborne (1967), and Jordinson (1970), 
among others; (2) spectral methods, used first by Gallagher and Mercer (1962) for Couette flow with 
Chandrasekhar and Reid functions, and later improved by Orszag (1971) with the use of Chebyshev 
polynomials; and (3) shooting methods, used first by Brown and Sayre (1951). All of these methods have 
advantages and disadvantages which show up in specialized situations, but they are all equally able to do 
the routine eigenvalue computations required in transition-prediction calculations. However, a shooting 
method has been used for almost all of the numerical results given in the present lectures, and it is this 
method that will be described here. 

1.2 Shooting methods 

After the early work of Brown (1951,1959,1960, 1961, 1962), computer codes for boundary-layer 
problems that were also based on shooting methods were developed by Nachtsheim (1953), Mack (1965a), 
Landahl and Kaplan (1965), Radbill and Van Driest (1966), Wazzan, Okamura and Smith (1968), Davey (1973), 
and Cebeci and Stewartson (1979), among others. Most of these codes solve the Orr-Sommerfeld equation; 
exceptions are the compressible stability code of Brown (1961), and the codes of Mack (1965a), which were 
also originally developed for compressible flow and only later extended to incompressible flow. Almost 
all of the codes have the feature that the numerical integration proceeds from the freestream to the wall. 
The exceptions are the codes of Brown and of Nachtscheim (1963), where the integration proceeds in the 
opposite direction [in a later report on plane Poiseuille flow, Nachtsheim (1961) used a method that 
integrates  in both  directions]. 

Various integrators have been used to implement the shooting method. Perhaps the most common is some 
form of the Runge-Kutta method, but the Adams-Moulton and Keller box method have also been used. One 
choice that has to be made is whether to use a fixed or variable step-size integrator. The latter is 
better in principle, but it adds to the computational overhead, and thus to the expense, and it may be as 
difficult to construct a proper error test and then choose the error limits as it is to select the proper 
fixed step size.    It must also be remembered that the variable step-size methods do not really address the 
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right problem. What we are Interested in is a certain aoouraoy of the eigenvalues and eigenfunctions, not 
in the per-step truncation error of the independent solutions, which is what the variable step-size 
methods control. These methods seem to require more integration steps than fixed step-size methods, which 
adds to the expense, and the only compensation is to relieve the user of the need to select the step size. 
The JPL viscous stability codes have used a fixed step-size fourth-order Runge-Kutta integrator for many 
years without ever encountering a problem that required a variable step-size integrator. A severe test of 
any integrator is to calculate the discrete eigenvalue spectrum, because the higher viscous modes have 
rapidly oscillating eigenfunctions. The fixed step-size integrator had little difficulty in calculating a 
number of additional temporal modes for plane Poiseuille flow, and its ultimate failure in a portion of 
the complex u/aplane for Blasius flow was caused by a round-off error problem that apparently cannot be 
cured by any of the usual methods  [Mack (1976),   p.  501], 

The early applications of shooting methods suffered from the problem of parasitic error growth. This 
growth arises because of the presence of a rapidly growing solution in the direction of integration that 
is associated with the large characteristic value A^ in the freestream, which the numerical round-off 
error will follow. The parasitic error eventually completely contaminates the less rapidly growing 
solution, associated with the characteristic value A ^ in the freestream. The essential advance in coping 
with this problem, which had previously limited numerical solutions to moderate Reynolds numbers, was made 
by Kaplan (1964). The Kaplan method "purifies" the contaminated solution by filtering out the parasitic 
error whenever it becomes large enough to destroy the linear independence of the solutions. An 
illuminating presentation and application of the Kaplan method may be found in Betchov and Criminale 
(1967). Three recent methods that cope exceptionally well with the contamination problem are the Riocati 
method [Davey (1977,1979)], the method of compound matrices of Ng and Reid (1979,1980), and the method of 
order reduction [Van Stijn and Van de Vooren (1982)]. 

It.3    Gram-Schmidt orthonormalization 

A widely used method, that was originally developed for systems of linear differential equations by 
Godunov (1961) and Bellman and Kalaba (1965) and applied to the boundary-layer stability problem by 
Radbill and Van Driest (1966) and Wazzan, Okamura and Smith (1968), is that of Gram-Schmidt 
orthonormalization. This method has the advantage that it is easier to generalize to higher-order systems 
than is the Kaplan filtering technique. However, the geometrical argument often adduced in its support, 
that this procedure preserves linear independence by keeping the solution vectors orthogonal, cannot be 
correct because the solution vector space does not have a metric. In such vector spaces, vectors are 
either parallel or non-parallel; the concept of orthogonality does not exist. Instead, the 
orthonormalization method works on exactly the same basis as Kaplan filtering: the "small" solution is 
replaced by a linear combination of the "small" and "large" solutions which is itself constrained to be 
"small." 

For the simplest case of a two-dimensional wave in a two-dimensional boundary layer, there are two 
solutions, Z'' and z'^^', each consisting of four components. In the freestream, z'''^ is the inviscid and 
Z^^' the viscous solution. Although this identification is lost in the boundary layer, Z^3) continues to 
grow more rapidly with decreasing y than does Z^^ The parasitic error will follow Z^3)^ 3^^ when the 
difference in the "magnitudes" of Z^^J and Z^^^ as defined by an arbitrarily assigned metric becomes 
sufficiently large, Z^''' will no longer be independent of Z^^J. ^ell before this occurs, the Gram-Schmidt 
orthonormalization algorithm is applied. The "large" solution z'-^' is normalized component by component 
to give the new solution 

s(3) , z(3)/(z(3)»z(3)}1/2 ^ (^^^^ 

where an asterisk refers to a complex conjugate and  {} to a scalar product.  The metric adopted for the 
vector space is the usual Euclidian norm. The scalar product of Z^^^ and S^3) ^g yged to form the vector 

Sf^ [Z(1)»- (s(3)'z(1))s(3)]/(s(1)V))1/2  ,        (4.2) 

which replaces z'''',  and where S refers to the quantity in the numerator. 

The numerical integration continues with S^''^ and S^3) ^n place of Z^''^ and Z^3)^ and when in turn 
jS*'^'! exceeds the set criterion of, say, 10^ with single precision arithmetic and a 36 bit computer word, 
the orthonormalization is repeated. With homogeneous boundary conditions at the wall, it makes no 
difference in the determination of the eigenvalues whether the Z^^^ or S^^^ are used. A linear 
combination of the two solutions satisfies the u(0)=0 boundary condition, but the v(0)=0 boundary 
condition will in general not be satisfied unless a , g and oi satisfy the dispersion relation. 

Although the orthonormalization procedure has no effect on the method of determining eigenvalues, it 
does complicate the calculation of the eigenfunctions. The solution vectors of the numerical integration 
are linear combinations of the original solution vectors z'^^ and Z^3)_ and it is necessary to "unravel" 
these combinations. Two well-known applications of orthonormalization have been given by Conte (1966) and 
by Scott and Watts (1977). The latter authors incorporated their method in the general purpose code 
SUPORT that has been used in several stability investigations. A different procedure from either of these 
was worked out for the JPL stability codes (1971), and is readily applicable to any order of differential 
equations. 

4.4 Newton-Raphson search procedure 

The Newton-Raphson method has been found to be satisfactory for obtaining the eigenvalues. The 
boundary condition on Z^'-^ (or S^'O is satisfied at the conclusion of each integration by a linear 
combination of the two solutions at y=0. In the spatial theory with t^ and 3 fixed, the guess value of 
Oj, is perturbed by a small amount and the integration repeated. Because 9(0) is an analytic function of 
the complex variable a, the Cauchy-Riemann equations 
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d^AO)/da.  = 3^_(0)/3a_ , 
(1.3) 

3^p(0)/3aj^ = -3^j^(0)/3aj, , 

can be applied to eliminate the need for a second integration with a^^ perturbed. We may note that <>(0) is 
an analytic function of a even after orthonormalization with the usual definition of the scalar product, 
remarks to the contrary in the literature notwithstanding. 

The corrections 6a and 6a. to the initial guesses a^, and a^^ are obtained from the residual ^(0) and 
the numerical (linear) approximations to the partial derivatives Dy 

[3v_(0)/3a ]6a„ - [ 3l^„(0)/3a. ]6ai = -^0) . r    r  r    r    1  1    r ^^ ^^^ 

[3?i(0)/3aj.]6ap - [35j_(0)/3aj^]6aj_ = -^^(0) . 

The corrected a and a. are used to start a new iteration, and the process continues until Sa^, and 6a^ 
have been reduced below a preset criterion. 

5.  VISCOUS INSTABILITY 

5.1 Kinetic-energy equation 

The approach to instability theory based on the energy equation was originated by Reynolds (1895), 
and has proven to be especially helpful in the nonlinear theory. An extended account of recent work has 
been given by Joseph (1976). In the linear theory, the eigenmodes of the Orr-Sommerfeld equation already 
supply us with complete information on the instability characteristics of any flow, so the energy method 
is mainly useful as an aid to our physical understanding. We start by defining 

e =.(1/2)(u2 + v2) (5.1) 

to be the kinetic energy of a small 2D disturbance. When we multiply the dimensionless x and y parallel- 
flow momentum equations by u and v, respectively, and add, we obtain 

(i + u|-)e + uv4^= -u|£- v|P-+ i (uv^u+w^v) . (5.2) 
3t   3x      dy    3x   3y  R 

If we integrate Eq. (5.2) from y=0 to infinity and average over a wavelength, we find, for a temporal 
disturbance, 

-L^<^^--Jy>'^' ^5.3) 3E 
3t VQ' dy     .-Q 

where E is the total disturbance kinetic energy per wavelength, T = - <uv> is the Reynolds stress, and 

C = 3u/3y - 3v/3x (5.1) 

is the z-component of the fluctuation vorticity.    A derivation of Eq. (5.3) may be found in the review 
article of Prandtl  (1934,  p.   180),    The last term can be rewritten as 

OO CO T O CO n 

which is more readily identified as the viscous dissipation. It is customary to write Eq. (5.3) as 

3E/3t = P - D , (5.6) 
y»co 

P = /T(dU/dy)dy (5.7a) 
where 

■'0 
is the total energy production term over a wavelength, and 

CO 

/<c2>dy (5.7b) D 
'0 

is the viscous dissipation. A disturbance will amplify, be neutral, or damp depending on whether P is 
greater than, equal to, or less than D. Consequently, there can only be instability if T is sufficiently 
positive over enough of the boundary layer so that the production term can outweigh the dissipation term. 

5.2 Reynolds stress in the viscous wall region 

The inviscid theory gives the result that a flow with a convex velocity profile, of which the Blasius 
boundary layer is an example, can support only damped Instability waves. Originally the prevailing view 
was that a flow that is stable in the absence of viscosity can only be more stable when viscosity is 
present. We see from Eq. (3.8) that in a Blasius boundary layer, where D^U<0, a wave of any phase 
velocity less than the freestream velocity creates a positive Reynolds stress for y<yQ. Therefore, the 
only way an instability wave can exist is if viscosity causes a positive Reynolds stress to build up near 
the wall. It was this possibility that Taylor (1915) recognized, but his observation went unnoticed. A 
few years later Prandtl (1921) was led to the same idea, and calculated the Reynolds stress near the wall 
from a simple mathematical model. 

It is of interest to note that Prandtl was moved to investigate the possibility of viscous 
instability by an experiment in which he saw, or thought he saw, amplifying instability waves in a flow 
that was supposed to be stable. In view of the importance of this discovery, we shall quote a few lines 
from his paper: 
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"Previous mathematical investigations on the origin of turbulence have led to the opinion that small 
disturbances of a viscous, laminar flow between two walls are always damped.,. In order to learn how 
turbulence actually originates, I had built at Gottingen an open channel...and observed the flow by the 
Ahlborn method (sprinkled lycopodium powder)... Wave forms with slowly increasing amplitude were 
occasionally observed... These waves of increasing amplitude contradicted the dogma of the stability of 
laminar motion with respect to small disturbances, so that at first I tended to believe that I had not 
seen this infrequent phenomenon completely right." 

"We now applied ourselves to the theoreticl treatment, and, to anticipate a little, we found, 
contrary to the dogma, an instability of the small disturbances." 

Prandtl's argument was later refined by Lin (1951,1955), but we shall follow essentially the original 
derivation here. An Inviscid wave is assumed to exist in the boundary layer, and viscosity to act only in 
a narrow region near the wall. To simplify the analysis, U(y) is taken to be zero in this region. With 
this assumption, the 2D dimenslonless, parallel-flow x momentum equation simplifies to 

2 
3u      3p    1 3 u 
3?  = - ta + R 7T ' (5.8) 

?   ? ^ 
where the terms vDU and 3'^u/3x'^ have been dropped.  Outside of the wall viscous region, Eq. (5.8) reduces 

3u     3 
3t ^ S • (5.9) 

The disturbance velocity u consists of two parts: an inviscid part u. that satisfies Eq. (5.9), and a 
viscous part u^ that satisfies the difference between Eqs. (5.8) and (5.9J. It is the total velocity u=u^ 
+ u^ that satisfies the no-slip boundary condition.     Hence, 

(5.10) 

Uv(y)  = -Ui(0)  exp[-(1-l)(a)R/2)i'":y]exp[i(ax-a)t)   , (5.11) 

where the boundary conditions 

u(0)  = u^(0) + u^(0)  and u(y)+u^(y)  as y + ■» (5.12) 

have been applied. 

The additional longitudinal disturbance velocity u , which is needed to satisfy the no-slip 
condition,  induces,  through the continuity equation,  an additional normal disturbance velocity 

Vy(y)  = -y(3Uy/3y)dy    , (5.13) 

which yields, upon substitution of Eq. (5.11), 

v^(y) = (1-i)auj;(0)[1/(2afl)1/2]{exp[-(1-i)(ajR/2)^''2y]_ijg3qj[-j^(^^_^t)-] _ (g^j,) 

Outside of the viscous region (y-^) v^ is independent of y and u^ is zero. From Eq. (5.m), 

VyM  = -{^-i.)lau^(.0)/(.2<MS)'^/^]exp[liax-i,it)]     . (5.15) 

The consequences of Eq. (5.15) for the Reynolds stress are as follows. For an inviscid neutral 
disturbance, u and v are 90° out of phase [see Eqs. (2.50a) and (2.50o)] and T is zero. However, for any 
other disturbance u and v are correlated, and there is a Reynolds stress. Since u is zero outside of the 
wall viscous layer, it can contribute nothing to T there. However, v^ persists for some distance outside 
of the wall layer, and since it is shifted 135° with respect to u, it will produce a Reynolds stress. 
This Reynolds stress must equal the Reynolds stress set up by the disturbance in the vicinity of the 
critical layer, and which, in the absence of viscosity, would extend to the wall. We have already derived 
a formula for this stress in Section 3.1 [Eq. (3.8)]. 

The formula for the Reynolds stress at the edge of the wall viscous region can be derived from Eq. 
(5.15). We find 

\ = -"^"iV = (1/2)[a/(2'JR)^^^][u.(0)]^ . (5.16) 

If the ratio T^/<V^> is formed, we have 

Te/<v2> = (1/2a)(2/wR)1/2 _ ^^ .,^j 

A general expression forx in the wall viscous region can be obtained from Eqs. (5.11) and (5.14), 
and this expression would give the increase of T from zero at the wall to the value given by Eq. (5.17) at 
the edge of the viscous region. However, Eq. (5.17) establishes the essential result that T is positive, 
and thus viscosity acts as Taylor thought it would, and builds up a Reynolds stress to match the inviscid 
Reynolds stress, or, in Taylor's precise view, permits the momentum of the disturbance to be absorbed at 
the wall. According to Eq. (5.7a), with a positive stress energy will be transferred from the mean flow 
to the disturbance. Consequently, the wall viscous region, which is formed to satisfy the no-slip 
boundary condition for the disturbance, has the effect of creating a Reynolds stress which acts to 
destabilize the flow. This mechanism must be present to some extent for all disturbances, but whether a 
particular disturbance is actually amplified or damped will depend on the magnitude and distribution of 
the Reynolds stress through the entire boundary layer, and on the magnitude of the dissipation term. 
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As a note of caution, it must be recalled that the preceding analysis rests on the neglect of U in 
the wall viscous region. Therefore, we can expect the results to be valid only at high values of R, when 
the wall viscous region is thin compared to the boundary-layer thickness, and when the critical layer is 
outside of the wall viscous region. 

6.   NUMERICAL RESULTS - 2D BOUNDARY LAYERS 

In this Section, we shall present a number of numerical results which have been chosen to illustrate 
important aspects of the theory, as well as to give an idea of the numerical magnitudes of the quantities 
we have been discussing in the previous Sections. 

6.1  Blasius boundary layer 

The Blasius boundary layer, because of its simplicity, has received the most attention. The uniform 
external flow means that not only is the boundary-layer self similar, but there is only a single 
parameter, the Reynolds number. As there is no inflection point in the velocity profile, the only 
instability is viscous instability. Thus we are able to study this form of instability without the 
competing influence of any other mechanism of Instability. 

The first result of importance is the parallel-flow neutral stability curve for 2D waves, which is 
shown in Fig. 6.1 as three separate curves for: (a) the dimensionless frequency F [Eq. (2.60)]; (b) the 
dimensionless wavenumber a based on L [Eq. (2.57)]; and (c) the dimensionless phase velocity c based on 
Ui. Normal modes for which F, a and c lie on the curves are neutral; those for which F, a and c lie in 
the interior of the curves are unstable; everywhere else the normal modes are damped. The neutral- 
stability curves are a convenient means of identifying at each Reynolds number the F,a and c bands for 
which a wave is unstable. Figure 6.1a also contains two additional curves which give the frequencies of 
the maximum spatial amplification rate and of the maximum amplitude ratio A/AQ, where AQ is the amplitude 
at the lower-branch neutral point of the frequency in question. Both maxima are with respect to frequency 
at constant Reynolds number. We have used a in Fig. 6.1a to denote ~a^, the spatial amplification rate in 
the streamwise direction, and will continue to do so in the remainder of this document. The corresponding 
wavenumbers for the additional curves are given in Fig. 6.1b. The ratio of wavelength to boundary-layer 
thickness is 2-n/aj.y(,, and y^, the y [Eq. (2.59)] for which U = 0.999j is equal to 6.0J. Consequently, the 
unstable waves at R = 1000 have wavelengths between 5.556(19.46 ) and 1t.16j^49.2 6 ) , According to Fig. 
6.1c, the unstable phase velocities at this Reynolds number are between 0.282Ui and 0.335Ui. 

We must keep in mind that the neutral curves of Fig. 6.1 have been calculated from the quasi-parallel 
theory, which does not distinguish between flow variables or location in the boundary layer. All of the 
non-parallel neutral curves calculated by Caster (1971) define a slightly greater unstable zone, with the 
greatest differences coming at the lowest Reynolds numbers as might be expected. The difficulties 
involved in making accurate measurements of wave growth at low Reynolds numbers have so far precluded the 
experimental determination of what can be regarded as an unequivocally "correct" neutral-stability curve 
for any flow variable. 

# 
The next quantity to examine is the dimensionless spatial amplification rate a based on L . This 

amplification rate is shown in Fig. 6.2 for 2D waves as a function of the dimensionless frequency F at the 
two Reynolds numbers R = 600 and 1200. From the definition of the amplification rate in Eq, (2.27), the 
fractional change in amplitude over a distance equal to one boundary-layer thickness is ay^. Thus the 
most unstable wave of frequency F = 0.33 x 10"^ at R = 1200 grows by 4.0$ over a boundary-layer thickness. 
The amplification rate based on v /Ui, a - a/R, gives the fractional wave growth over a unit increment in 
Re.  Thus this same wave grows by 5.5? over an increment in Re of 10,000. 

The maximum amplification rates o^^^ and a^^^^, where the maxima are with respect to frequency (or 
wavenumber) at constant Reynolds number, are shown in Fig. 6.3 as functions of Reynolds number. The 
amplification rate a, which gives the wave growth per unit of Reynolds number, peaks at the low Reynolds 
number of R = 630. The amplification rate a, which is proportional to the wave growth per boundary-layer 
thickness, does not peak until R = 2740 [calculated by Kiimmerer (1973)]. The dimensional amplification 
rate is proportional to a for a fixed unit Reynolds number. Figure 6.3 shows that the decline in the 
dimensional amplification rate with increasing x-Reynolds number is almost counteracted by the increase in 
the boundary-layer thickness. Viscous instability, if characterized by a, persists to extremely high 
Reynolds numbers. However, if the measure of viscous instability is taken to be the wave growth over a 
fixed X* increment as expressed by 5, then by this criterion the maximum viscous instability occurs at low 
Reynolds number. 

The logarithm of the amplitude ratio, A/AQ, is shown in Fig. 6.4 for 2D waves as a function of R for 
a number of frequencies F. The envelope curve, which gives the maximum amplitude ratio possible at any 
Reynolds number, is also shown in the figure along with the corresponding frequencies. It is this type of 
diagram that is used in engineering studies of boundary-layer transition. When ln(A/AQ), which is often 
called the N factor, reaches some predetermined value, say nine as suggested by Smith and Gamberoni 
(1956), or ten as suggested by Jaffe, Okamura and Smith (1970), transition is considered to take place, or 
at least to start. 

The distribution of the logarithm of'the amplitude ratio with frequency is shown in Fig. 6.5 for 
several Reynolds numbers. This figure illustrates the filtering action of the boundary layer. The 
simultaneous narrowing of the bandwidth of unstable frequencies and the large increase in amplitude ratio 
as the Reynolds number increases means that an Initial uniform power spectrum of instability waves tends 
to a spectrum at high Reynolds numbers that has a sharp peak at the most amplified frequency. The inset 
in Fig. 6.5 gives the bandwidth, defined as the frequency range over which the amplitude ratio is within 
1/e of the peak value, as a function of Reynolds number. 

• 
6 is the dimensional boundary-layer thioknegs, ygis the dimensionless boundary-layer thickness 6/L , 
and, in accord with the standard notation, 6 is the dimensional displacement thickness. 
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The Squire theorem (Section ^.^.^) has told us that it is a 2D wave that first becomes unstable. 
Furthermore, at any Reynolds number it is a 2D wave that has the maximum amplification rate and also the 
maximum amplitude ratio. Thus the envelope curve of amplitude ratio when all oblique waves are considered 
as well as 2D waves is still as shown in Fig. 6.1( However, for a given frequency the 2D wave is not 
necessarily the most unstable, as is shown in Fig. 6.6. In this figure, the spatial amplification rate a, 
calculated with i^ = 0, is plotted against the wave angle if) for three frequencies at R = 1200. At this 
Reynolds number, the maximum amplification rate occurs for F = 0.33 x 10"''. Above this frequency, 2D 
waves are certainly the most unstable. However, below about F = 0.26 x lO"** an oblique wave is the most 
unstable,   and the wave angle of the maximum amplification rate increases with decreasing frequency. 

In the calculations for Fig. 6.6, the complex wavenumber was obtained as a function of the spanwise 
wavenumber g with &^ = 0 and the frequency real and constant. Thus the complex group-velocity angle (j> 
can be readily obtained from 30/83^, (= -tan<t>), and the results are given in Fig. 6.7 for F x 1 0^ = 0.20 
and 0.30. The real part of cj) is limited to less than 10°, and <t>^ can be either plus or minus. It is 
evident that at the maximum of a, where 30/33,. is real, (f)^ must be zero. With the group-velocity angle 
known, the accuracy of the simple relation Eq. (2.35) for a as a function ofij^can be checked. We_choose 
F = 0.20 X 10" aniii= 45 in order to have (f. real. Table 6.1 gives k, the_ wavenumber; a, the 
amplification rate parallel to ■;j(both_of these are calculated as an eigenvalue); a(<j;), the component of a 
in the x direction for the specified I{J; and a(0), the amplification rate in the x direction for if = 0 as 
calculated from Eq. (2.i)1c), the_spatial-theory replacement for the Squire transformation derived from Eq. 
(2.35)_, but with i) replaced by I|J. In the latter calculation we have used <i> = 9.65°, the value obtained 
withi(j= 0. The transformation works very well; the small discrepancies from the correct i^= 0 value are 
due to (jij. being a weak function of ^ instead of constant as assumed in the derivation. 

Table 6.1 
transformati 

Effect of ijj on amplification rate and test of 
ion rule.     F = 0.20 x  10"^,   R =  1200,  \li = 45°. 

f k ax1o3 a(i|;)x103 
eigenvalue 

a(0)x103 
transformation 

0.0 0.1083 3.201 3.201 3.201 
9.7 0.1083 3.156 3.111 3.201 
15.0 0.1083 3.170 3.062 3.201 
30.0 0.1083 3.368 2.916 3.203 
45.0 0.1083 3.873 2.739 3.204 
60.0 0.1083 4.955 2.478 3.207 
75.0 0.1083 7.601 1.967 3.216 

We observe in Table 6.1 that the real Squire transformation, which is the a(i]J) entry foriJJ=iJj, is in 
error by 14.4$, whereas the correct transformation is in error by only 0.^%. When the same calculation is 
repeated for the other frequency of Fig. 6.7, F = 0.30 x 10"^, for which <p. = -2.48° ati()= 45° instead of 
0 as for the frequency of the Table, equally good results are obtained for a(0) from the transformation. 
However, k is no longer constant, but increases with ij;; for if = 75° it is 0.4? larger than at if - 0° 
Nayfeh and Padhye (1979)  provide a formula for  this  change. 

In Fig. 6.8, ln(A/AQ) is given at several Reynolds numbers for F = 0.20 x 10"'' as calculated with the 
irrotationality condition, Eq. (2.64), applied to the wavenumber vector. The abscissa is the initial wave 
angle at R = 900. The change in the wave angle from R = 900 to 1900 is 1.7° for the wave that has an 
initial wave angle of 45°. This figure shows that the greater amplification rate of oblique waves in the 
instability region near the lower branch of the neutral curve translates into an amplitude ratio that is 
greater than the 2D value. However, ln(A/AQ) for an oblique wave is never more than 0.35 greater than the 
2D value. Figure 6.8 also shows that just as the frequency bandwidth narrows with increasing R, so does 
the bandwidth in spanwise wavenumber. Although at the lower Reynolds numbers the response extends to 
large wave angles, at R = 1900 the amplitude ratio is down to 1/e of its 2D value at i|) = 37°, and on the 
envelope curve this angle will be still smaller. For example, the 1/e amplitude for F = 0 60 x 10"'' at 
the envelope-curve Reynolds number (R = 900) occurs at ,|j = 29°; for F = 0.30 x 10"'', at ^ - 26° Even 
so. It is necessary when thinking about wave amplitudes in the boundary layer to keep in mind that'both a 
frequency band and spanwise-wavenumber band must be considered,  not just a 2D wave. 

So far we have only been considering the eigenvalues and not the eigenfunctions. The eigenfunctions 
give the possibility of penetrating further into the physics of instability, and we shall take them up 
briefly at this point. Eigenfunctions are readily obtained with any of the current numerical methods, but 
rrf-'^tf^'"""," to compute with the old asymptotic theory. The first eigenfunctions were obtained by 
bchlichting (1935), and the good agreement of the measurements of Schubauer and Skramstad (1947) with 
these calculations was a key factor in establishing the validity of the linear stability theory. The 
problem now is more one of finding a reasonable way to present the great mass of numerical data that can 
be computed, and to extract useful information from this data. Some progress has been made in the latter 
direction by Hama, Williams and Fasel (1980). For different amplitudes of 2D waves, these authors 
calculated streamline pattens, contours of constant total vortioity, Reynolds stress and all terms of the 
local spatial energy balance. 

finn ^tnn''^ I'^J^^^ ^he amplitude of the eigenfunction u of the streamwise velocity fluctuation u at R = 
800, 1200 and 1600 for the 2D wave of frequency F = 0.30 x 10"\ The corresponding phases are given in 
l^' l'^°: ,^ "^l "t ^^^" ^''°'° ^^S. 6.1a, these Reynolds numbers are, respectively. Just below the lower 
branch of the neutral-stability curve, near the maximum of a, and on the envelope curve of the amplitude 
ratio. The eigenfunctlon normalization of Figs. 6.9 and 6.10 is 5(0) = (2"''/^o). The eigenfunctions 
have not been renormalized to, say, a constant peak amplitude as is often done, in o^der to emphasTze tha? 
m the quasi-parallel  theory  the  normalization is  completely arbitrary.    Nothing can be learned as to the 
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effect of the variability of the eigenfunotion with Reynolds number on the wave amplitude within the 
framework of this theory. Attempts have been made to do this, and plausible looking results obtained, but 
this approach is without theoretical justification. It has already been pointed out in Section 2.2 that 
the meaningful quantity for the amplitude modulation is the product of A(xO and the eigenfunction, and 
this product, which has a fixed value regardless of the normalization of the eigenf unction, can only be 
calculated from the nonparallel theory. 

For the wave of Fig. 6.9, the critical layer is at about y = 0.15 and varies only slightly with 
Reynolds number. Thus the location of the amplitude peak, which is a strong function of R, is only 
coincidentally at the critical point. As R increases, the viscous layer near the wall becomes thinner as 
expected. The characteristic phase change of approximately 180° in the outer part of the boundary layer 
has nothing to do with the 180° phase change at the critical layer in the inviscid solution [Eq. (3.9b)], 
but is a kinematical consequence of a wave with zero amplitude at both the wall and at y-»<». At some yj^ 
greater than the y of maximum amplitude, where viscosity has little influence, the slope of the 
streamlines relative to the phase velocity has a maximum. Thus the velocity-streamtube area relation 
changes sign, and at all y > y,^ the u fluctuation from this effect is opposite in sign to the fluctuation 
that arises from the wavy motion in a monotonically increasing velocity profile. At some y^, > y^,, these 
two effects can exactly balance for a neutral inviscid wave, and almost balance for nonneutral, viscous 
waves. For the latter, as shown in Fig. 6.10, there is a nearly 180° shift in the phase of u. The fact 
that the phase can either advance or retreat in this region was first noted by Kama et al (1980), and its 
significance, if any, is unknown. 

It was shown in Section 5.1 that the kinetic energy of a 2D instability wave is produced by the term 
TdU/dy, where T is the Reynolds stress built up by the action of viscosity. Reynolds stress distributions 
have been given by Jordinson (1970) and Kummerer (1973), among others. The energy production term is 
shown in Fig. 6.11 for the frequency and three Reynolds numbers of Figs. 6.9 and 6.10. The peak 
production does not occur at the critical layer at any of the three Reynolds numbers. We see that energy 
production is by no means limited to the region between the wall and the critical layer, as might be 
expected from the simple theory of Section 5. At R = 1200, where the amplification rate is near its 
maximum, there is significant energy production oVer about half of the boundary-layer thickness. In these 
examples, the Reynolds stress is positive except for the slightly dampled wave at R = 800, where there is 
a small negative contribution over the outer 70? of the boundary layer. The damping at R = 800 is due to 
viscous dissipation, not to a negative production term. Kama et al (1980) give an example at low Reynolds 
number where the production term is negative over the entire boundary layer. 

6.2 Falkner-Skan boundary layers 

The influence of pressure gradient on boundary-layer stability can be studied conveniently by means 
of the Falkner-Skan family of self-similar boundary layers, where the Hartree parameter 0jj [Eq. (2.62)] 
serves as a pressure-gradient parameter. The range of Bj^ is from -0.19883771 (separation profile) through 
0 (Blasius profile) to 1.0 (2D stagnation-point profile). Extensive numerical calculations for Falkner- 
Skan profiles have been carried out by Wazzan, Okamura and Smith (1968; see also Obremski et al. (1969)], 
and by KUmmerer (1973). Figure 6.12, taken from Mack (1978), gives the influence of Bj^ on the N-factor 
envelope curve. It is clear that a favorable pressure gradient (Bj^ > 0) stabilizes the boundary layer, 
and an adverse pressure gradient (gjj < 0) destabilizes it. The strong instability for adverse pressure 
gradients is caused by an inflection point in the velocity profile that moves away from the wall as B j^ 
becomes more negative. The adverse pressure gradient Falkner-Skan boundary layers are particularly 
instructive because they provide us with examples of boundary layers with both viscous and inflectional 
instability. 

The amplification rate a is unsuitable for studying inflectional instability, which is basically an 
inviscid phenomenon, as it is zero at R ^<" regardless of whether the boundary layer is stable or unstable 
in the inviscid limit. The calculations of Kummerer (1973) include both a andoand show that the maximum 
amplification rate a moves from R = 27t0 for the Blasius boundary layer to R-w as Bj^ decreases from 
zero.  When a is at R-*", which occurs before B. reaches the separation value, we can say that the 
boundary layer^is dominated by inflectional instability. In these cases, viscosity acts primarily to damp 
out the disturbances just as envisioned by the early investigators. When we take up compressible boundary 
layers in Part B, we shall encounter another example where the dominant instability changes from viscous 
to inflectional as a parameter (the freestream Mach number) varies. 

The frequencies along the envelope curves of Fig. 6.12 are given in Fig. 6.13. We may observe that 
in boundary layers with favorable pressure gradients, where viscous instability is the only source of 
instability, it is low frequency waves which are the most amplified. On the contrary, for boundary layers 
with adverse pressure gradients, where inflectional instability is dominant, it is high-frequency waves 
which are the most amplified. 

In a natural disturbance environment, a wide spectrum of normal modes may be expected to exist in the 
boundary layer. It is helpful to know the sharpness of the response in estimating when the disturbance 
amplitude is large enough to initiate transition. A measure of this quantity is given in Fig. 6.14, where 
a frequency bandwidth of the 2D waves along the envelope curve, expressed as a fraction of the most 
amplified frequency, is shown for the Falkner-Skan family. This bandwidth is not identical to the one in 
the inset of Fig. 6.5, as it gives only the frequency range less than the most amplified frequency for 
which the amplitude ratio is within 1/e of the peak value. The filtering action of the boundary layer is 
again evident in the narrowing of the bandwidth with increasing Reynolds number for a given boundary 
layer, and we see that the more unstable adverse pressure-gradient boundary layers have the strongest 

filtering action. 

6.3 Non-similar boundary layers 

The self-similar boundary layers are useful for illustrating basic instability mechanisms, but in 
practice boundary layers are non-similar. A computer code to perform stability calculations for non- 
similar boundary layers is more complicated than for self-similar boundary layers, but only because of the 
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necessity of calling up a different velocity profile at each Reynolds number, or of interpolating between 
different profiles. The stability calculations themselves are the same as in any Reynolds number 
dependent boundary layer. The eigenvalues are calculated as a function of Reynolds number, and then can 
be subsequently used to calculate N factors, or for any other purpose, exactly as if the boundary layer 
were self-similar. Such calculations have been done on a routine basis as least as far back as the paper 
of Jaffe, Okamura and Smith (1970), 

6.1 Boundary layers with mass transfer 

Suction stabilizes a boundary layer, and blowing destabilizes it. This result was established by the 
early investigators, and extensive stability calculations were carried out with the asymptotic theory. 
Suction can stabilize a boundary layer with or without an inflection point. The stability mechanism is 
similar to the action of a pressure gradient. Suction gives a "fuller" velocity profile, just as does a 
favorable pressure gradient; blowing gives a velocity profile with an inflection point, just as does an 
adverse pressure gradient. Suction is the primary method proposed for laminar flow control on aircraft, 
where it has been investigated mainly in connection with three-dimensional boundary layers. A summary 
account of early work on this subject may be found in the book of Schlichting (1979). More recent work is 
primarily associated with Pfenninger, and a summary account of the vast body of work on this subject 
carried out by him and his co-workers may be found in the Lecture Notes of an AGARD/VKI Special Course 
[Pfenninger (1977)]. 

6.5 Boundary layers with heating and cooling 

Heating an air boundary layer destabilizes it, and cooling stabilizes it. The proper calculation of 
this effect requires the compressible stability theory which is given in Part B. An example for a low- 
speed boundary layer may be found in Section 10.3. 

For a water boundary layer, the effect is the opposite, and heating the wall has been extensively 
studied as a means of stabilization. This mechanism of stabilization is solely through the effect on the 
viscosity, and can be studied with the incompressible stability theory provided only that the viscosity is 
taken to be a function of temperature. The initial work on this subject was by Wazzan, Okamura and Smith 
(1968b). 

6.6 Eigenvalue spectrum 

An arbitrary disturbance cannot be represented by a single normal mode, or by a superposition of 
normal modes. These modes represent only a single member of an entire eigenvalue spectrum, and it is this 
spectrum that is required for an arbitrary disturbance. It can be proved that for a bounded shear flow, 
such as plane Poiseuille flow, the eigenvalue spectrum is discrete and infinite [Lin (1961)]. That is, 
for a given wavenumber and Reynolds number, there is an infinite discrete sequence of complex frequencies 
whose eigenfunctions satisfy the boundary conditions. Each element of the sequence constitutes a mode. 
This is the more precise meaning of the term mode; what we have called the normal modes all belong to the 
first, or least stable, of these more general modes. To distinguish between the two usages of the term 
mode, we shall refer to the discrete sequence as the viscous modes. Only the first viscous mode can be 
unstable; all of the others are heavily damped, which is the reason why they are unimportant in almost all 
practical stability problems. Calculations of the discrete temporal eigenvalue spectrum of plane 
Poiseuille flow have been carried out by Grosch and Salwen (1968), Orszag (1971), and Mack (1976). 

It was long believed that the eigenvalue spectrum of boundary-layer flows is also discrete. However, 
a calculation by Jordinson (1971) for a single value of a and R uncovered only a finite discrete spectrum 
for the Blasius boundary layer. These calculations were in some error numerically, but a later 
investigation by Mack (1976), which worked out the correct temporal spectrum, confirmed the conclusion of 
Jordinson. As shown in Fig. 6.15, at a = 0.179, R = 580, the case considered by Jordinson, there are 
only seven viscous modes. Mode 1 is amplified; Modes 2-7 are strongly damped. In Fig. 6.15, the 
eigenvalues are shown in complex c space, rather than oj space, because c = 1.0 has a special significance 
in this problem. 

Although the number of discrete modes is a function of both wavenumber and Reynolds number, the 
number remains finite and comparatively small. It was shown by Mack (1976) on the basis of numerical 
examples with finite-width channels in which the upper boundary moved to y ->- ", and with polynomial 
velocity profiles of various orders, that both the semi-infinite flow interval and the continuity of the 
velocity profile at the edge of the boundary layer, are responsible for the non-existence of the infinite 
part of the discrete spectrum of bounded flows. As a finite discrete spectrum is still unable to 
represent an arbitrary disturbance, where are the missing eigenvalues? 

It is a not uncommon occurrence in eigenvalue problems to have only a finite discrete spectrum. The 
remaining part of the spectrum is then a continuous spectrum. An example is the inviscid stability 
equation, which has a continuous spectrum associated with the singularity at the critical layer. It was 
already suggested by Jordinson (1971) that the discrete viscous spectrum is supplemented by a continuous 
spectrum along the c^, = 1 axis. The proof by Lin (1961) that a viscous continuous spectrum cannot exist 
for a bounded flow does not apply to an unbounded flow. Mack (1976) supported Jordinson's expectation by 
means of a few numerical calculations of continuous-spectrum eigenvalues, and also showed that the 
continuous spectrum is always damped because of the restriction CJ < -a/R. A more complete and definitive 
study of the continuous spectrum was subsequently carried out by Grosch and Salwen (1978), who are 
responsible for clarifying many aspects of this problem. Also a paper by Murdock and Stewartson (1977) 
must be mentioned. Results for the discrete spatial spectrum of the Blasius boundary layer have been 
given by Corner, Houston and Ross (1976). 
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7.  HARMONIC POINT SOURCES OF INSTABILITY WAVES 

7.1  General remarks 

In the previous Sections, we have been considering the behavior of the Individual normal-mode 
solutions of the linearized, quasi-parallel stability equations. This primary attention to the normal 
modes has been the usual course in most theoretical and experimental work on boundary-layer stability. The 
fundamental stability experiments of Schubauer and Skramstad (19t7) in low-speed flow, and of Kendall 
(1967) in high-speed flow were both designed to produce a particular normal mode. Even the much used e 
method of transition prediction is based on the amplitude ratio of the most amplified normal mode. In 
most actual flow situations, however, a spectrum of instability waves is present. If the boundary layer 
were truly parallel, the most unstable mode would eventually be the dominant one, and all of the other 
modes would be of negligible importance. As boundary layers found in practice are not parallel, the 
changing Reynolds number means that the identity of the most unstable mode also changes as the wave system 
moves downstream, and no single mode can grow indefinitely. Disturbance energy will always be distributed 
over a finite bandwidth. If the modes all come from a single source, or are otherwise phase related, then 
interference effects will cause the evolution of the wideband amplitude to further depart from the 
amplitude evolution of a single normal mode. This difference was vividly demonstrated in the experiment 
of Gaster and Grant (1975), where the amplitude at the center of a wave packet produced by a pulsed point 
source changed little with increasing distance from the source, even though the amplitude of the most 
amplified normal mode was increasing several times. 

The wave-packet problem was treated first by Criminale and Kovasnay (1962) and by Gaster (1958). 
Neither the straight wave fronts of the former, nor the caustic of the latter, were observed 
experimentally, because in each case approximations that were needed to produce numerical results turned 
out not to be valid. Later, Gaster (1975) obtained results in good agreement with experiment by replacing 
the method of steepest descent used earlier by direct numerical integration. He was also able to 
demonstrate the validity of the method of steepest descent for a 2D wave packet in a strictly parallel 
flow by exact calculation of the necessary eigenvalues [Gaster (1981b,1982a)]. Finally, he showed how to 
extend this method to a growing boundary layer [Gaster (1981a,1982b)], where the mean flow downstream of 
the source is a function of Reynolds number. 

In this Section, we shall examine a simpler problem than the wave packet, namely the stationary wave 
pattern produced by a harmonic point source. This wave motion has the same number of space dimensions as 
a 3D wave packet, but is really a 2D wave propagation problem that is closely related to Caster's 2D wave 
packets. The propagation space here is x,z, the plane of the flow, rather than x,t as in the latter 
problem. The fact that the wave motion is two dimensional makes it possible to obtain detailed numerical 
results both by numerical integration and by Caster's (1981a,1982b) extension of the method of steepest 
descent for a growing boundary layer [Mack and Kendall (1983)]. In the point-source problems, no attempt 
is made to find a complete mathematical solution. Instead it is merely assumed, following Caster (1975), 
that the source produces a continuous spectrum of the least stable normal modes. For a pulsed 2D (line) 
source, the spectrum is over frequency; for a pulsed 3D (point) source, the spectrum is over frequency and 
spanwise wavenumber; for a harmonic point source, the spectrum is over spanwlse wavenumber. It is 
usually, but not always, assumed that the spectral densities are uniform ("white noise" spectra). 

The solution for a harmonic point source is obtained by evaluating the Integral for the complex 
amplitude over all possible spanwise wavenumbers. The most straightforward method is to use direct 
numerical Integration; a second method is to evaluate the Integral asymptotically by the method of 
steepest descent as was done for parallel flows by Cebeci and Stewartson (1 980a,1980b), and, in more 
detail, by Nayfeh (1980a,1980b). Some numerical results for Blasius flow were cited by Cebeci and 
Stewartson (1980b), but within the framework of the e^ method of transition prediction. Only the 
exponential term of the amplitude was evaluated, and the saddle-point condition was the one for parallel 
flow. 

Experiments on the harmonic point source have been carried out by Cllev, Kachanov and Kozlov (1981), 
and by Mack and Kendall (1983). In these experiments, extensive hot-wire measurements of amplitude and 
phase were made in the downstream and spanwise directions in a Blasius boundary layer. In Gllev et al. 
(1981), a Fourier analysis of the data yielded the oblique normal modes, but no comparisons with theory 
were made. One significant result was the mapping out of the lines of constant phase in the x,z plane as 
shown in Fig. 7.1. At least three distinct regions can be identified in this figure. Close to the 
source, the curvature is convex, and far away it is concave. In an intemediate region, a "dimple" appears 
at the center line. A region of concave curvature gradually extends outward to encompass the entire outer 
portion of the wave pattern, while the dimple spreads, flattens and finally disappears. All of these 
features are duplicated In the wave pattern calculated by numerical integration [Mack and Kendall (1983)]. 

Figure 7.1 shows that there is a maximum inclination of each constant-phase line that is much less 
than the maximum wave angle of unstable normal modes. This feature follows directly from the method of 
steepest descent, where the saddle-point condition limits the Reynolds-number dependent maximum wave angle 
to ilO°-it5°. This restriction was noted in unpublished calculations by Mack and by Padhye and Nayfeh 
(private communication), as well as by Cebeci and Stewartson (1980b). 

In the quasi-parallel theory, amplitude is defined as the Integral of the spatial amplification rate, 
and is not identified with any particular flow variable or distance y from the wall. In the Gaster-Grant 
(1975) experiment, amplitude was measured at the outer peak of the amplitude distribution; in Gllev et al. 
(1981) at a fixed y /6 in the boundary layer, and also at a fixed y just outside of the boundary layer; 
and in Mack and Kendall (1983), at the inner peak of the amplitude distribution. A comparison of the 
calculated amplitudes with the measurements thus demonstrates whether the amplitude of the quasi-parallel 
theory has any relevance to point-source problems. Exact correspondence can hardly be expected, if for no 
other reason than the fact that the disturbance energy Is distributed over an ever increasing boundary- 
layer thickness as the waves move downstream. 
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The integral over all spanwise wavenumbers for the dimensional velocity fluctuation u. (the subscript 
t denotes time dependence) from a source of frequency u    located at x*,z* is 

u*(x*,z*,t*) = exp(-ia)*t*)y g*(B*)exp[ix(B*;x*,z*)]dB*, (7.1) 

where g   (g   )  is the (complex)  amplitude  distribution function of dimensions  velocity x length,   the 
frequency  is  real, 

X( X  ,z )  =J^   a  (x  ;B   ,u  )dx    + B  (z -Zg) (7.2) 

is the time-independent part of th| phase, and the wav|number components a* and B* are complex. The 
eigenfunctions are ignored so that u^ is independent of y , and u^ could equally well be considered as any 
other flow variable. This integral will be evaluated below by direct numerical integration, and by an 
adaptation of Caster's (1981 a, 1982b) asymptotic method. 

7.2 Numerical integration 

We place the source at Zg =0, drop the time factor, and define the dimensionless variables 

    the 
dimensionless x and z are the usual x and z Reynolds numbers. The reason for the normalization constant 
2TT in the definition of g will appear in Section 7.4. With the definitions of Eqs. (7.2), Eq. (7.1) 
becomes 

.00 

u(x,z;F) = (1/27T)/ g(g)exp[ix(B;S,2)]dg . (7.1)) 
•'-co 

x(§;x,z) = /  Jdx + Bz • (7.5) 

We take 3 to be real for convenience, which means that we are going to sum over spatial normal modes of 
the type we have been using all along.  If we write 

With z =0, the phase is 

Xxr + iXi + BZ , (7.6a) 

where 

Xxr =j( "r'^^ ,   Xi =J    Sidx , (7.6b) 

the real and imaginary parts of u are 

u^(x,2) = (1/TT)/ g(g)exp(-Xi)oosX3jj,cos(gz)dg  , (7.7a) 
o 

and 

u^(x,2) = (I/Try g(B)exp(-X^)sinXxr00s(gz)dB . (7.7b) 
0 

We have taken advantage of the symmetry in § of g(3), X^^^, andX. to restrict the interval of integration 
to the positive 3 axis.  Equations (7.7) are the specific integrals to be evaluated by numerical 
integration.  It is convenient to present the numerical results in terms of the peak, or envelope 
amplitude > i- i 

A(x,z) = (u2 + u2)1/2  _ ^^_g^^ 

and the local phase 

e(x,z) = tan~''(u^/Uj.) . (7.8b) 

Both of these quantities can be measured experimentally. 

The numerical integration of Eqs. (7.7) proceeds as follows: With the dimensionless frequency F 
equal to the frequency of the source, the phase integrals X„„ and Xi of Eq. (7.6b) are evaluated as 
functions of x with constant 3 for a band of spanwise wavenumbers from the eigenvalues S(x;g,F) The 
Fourier cosine integrals are evaluated at enough z stations at each x to resolve the wave pattern 
Highly oblique waves are damped, with the damping rate increasing with increasing obliquity 
Consequently, the integrals of Eq. (7.7) will always converge for 5c > x if large enough values of 3 are 
used. At X = Xg, X = gz and g(3) is the Fourier cosine transform of u„(z). In particular, if i?(5)'- 1 
then Up is a 6-funotion in z; if g(g) is a Ckussian, then so is u . 

7.3 Method of steepest descent 

The method of numerical integration is straightforward, but requires the evaluation of a few hundred 
eigenvalues for good resolution of the wave pattern. A different approach is to evaluate the integral of 
Eq. (7.1) asymptotically by the method of steepest descent, or saddle-point method.  This method allows 
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certain results to be obtained with fewer calculations, and also has the advantage that the dominant wave 
at each x,z seems to correspond directly to what is observed. 

Equation-(7.1), with g{g) = 1, is written 

u(x,g) = lim (l/2TT)/*exp[(J-Xg)$(g)]dg , (7.9) 

where C is the contour of steepest descent in the complex g plane, and 

(x-Xg) $= ir\(2;g)d5E + iB($-2g) . (7.10) 

The limit x->«>is taken with z/(x-Xg) held constant.     The condition for the saddle point g^ is 

3<I>/3g = 0   , (7.11) 

which is equivalent to the two real conditions    /^ 

I. 
AOa/3e)^dx = -z    , (7.12a) 
Xs ^ 
A 

(8S/3B)idx = 0    . (7.12b) 

These integrals are evaluated with the complex g held constant, so that we are dealing with spatial waves 
that satisfy the generalized irrotationality condition of kinematic wave theory. 

The saddle-point conditions of Eq. (7.12) are of the same type as introduced by Gaster (1981a,1982b) 
for a 2D wave packet in a growing boundary layer. Usually the saddle-point method is applied to problems 
where the wave-propagation medium (here the boundary layer) is independent of x, but Gaster demonstrated 
the correctness of the present procedure when the medium is a function of x. In a strictly parallel flow, 
the boundary layer meets the more restricted requirement of x independence, and the saddle-point 
conditions simplify to 

Oa/3B)i. = -z/(5c-ics) ,                                                            (7.13a) 

(3a/3B)i = 0  . (7.13b) 

For a constant-frequency wave, 

(3a/3p) = -(3a)/3e)/(3a)/3a) = -tan (j) ,                   (7.11*) 

where ^ Is the complex angle of the group-velocity vector, and we see that the parallel-flow saddle-point 
condition is equivalent to requiring the group-velocity angle to be real. Consequently, the observed wave 
pattern in a parallel flow consists of waves of constant complex spanwise wavenumber g^ moving along 
group-velocity trajectories in the real x,z plane. This saddle-point condition has been applied to a 
growing boundary layer by Cebeci and Stewartson (1980a,1980b) and by Nayfeh (1980a,1980b). This procedure 
can yield satisfactory results in a restricted region of the x,z plane, but cannot be valid everywhere as 
the correct asymptotic representation of Eq. (7.9) is in terms of Eq. (7.12) saddle points rather than Eq. 
(7.18) saddle points. The "rays" defined by Eq. (7.12) are not physical rays in the usual sense. For a 
complex g that satisfies Eq. (7.12), z is complex at all x>X3 except at the final, or observation, point. 
The traje'otory that is traced out in the x,z plane by satisfying Eq. (7.12) at successive x>Xg for the 
same (g ) has a different (5;,)^ at each point. In a parallel flow, a single normal mode defines as 
entire ray; here a single normal mode defines only a single point. 

With $ expanded in a power series in g-g^,, and with only the first nonzero term retained (assuming 
it is the second derivative), Eq. (7.9) becomes 

u= (1/2TT)exp[(x-x )<i.(3 )] /'exp[l/2(32$/332)^(x-X3)(g-g<,)2]dg .        (7.15) 

We write o   o     ' ,     .^   ^ 
(3^$/3g^)A = Dexpde^) , (7.16a) 

3-e^ = iisexpdSg) , (7.16b) 

where s is the path length measured from the saddle point, and e^ is its inclination. With the contour C 
selected to pass through g^, from left to right at the constant angle e^ = -e^/2,  the final result is 

u(x,z) = [(l/2TT)(x-S3)D]1/2exp[(x-2g)$(gj,)]exp[i(Tr/it-eji/2)] . (7.17) 

Replacing D, x, a and | by D, R, a and B , where the reference length is L of Eq. (2.57), we obtain 

u(R,z) = (2/TrD)^/2exp(_x^ + ix,,)  , (7.18) 

where j^ 

D = 2\fji^(.d^a/d?,^)(in  I , (7.19) 

s 
-R 

Xr " "' 2/"a\(R;ec)dR + (.&^)^VR  + TT/U - 6^/2 , (7.20a) 

Xi = 2A\(R;B(j)dR + (3(,)i2/R , (7.20b) 
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and   9^ is the argument of the complex integral in Eq.  (7.19).     We continue to use z for the z-Reynolds 
number. 

In these variables the saddle-point conditions are 

zf (3a/9B)j,RdR =  -g     , (7.21a) 

/R 
/     Oa/3B)^RdR = 0     . (7.21b) 
Kg 

With the parallel-flow saddle-point conditions of Eqs,  (7.13),  Eq.  (7.18) is still valid,  but D and   9. 
have different meanings.    With 3'^a/3g'^ constant, " 

D =  [R(R2-R2)o2a/3g2)-,1/2     ^ (^_22) 

and 9^ is the argument of B^S/sg^ rather than of its integral. 

For a given R and z, a double iteration procedure is needed to find the complex g that satisfies 
Eq. (7.12). As each iteration Involves the recalculation of eigenvalues and 'd^a/'da'^ from R to R, the 
computational requirements are large. If only R is given, then an iteration of g. for a sequence of g 
will produce the wave pattern at that R with much less computation, but the specific z at which the 
amplitude and phase are calculated will not be known in advance. Or, both g and g. can be specified, and 
R advanced until the integral in Eq. (7.12b) changes sign. This will not always happen, but when it does, 
a saddle point and its location in the R,z plane are obtained without iteration. 

Because of the iteration requirement, the saddle-point method is less suited than numerical 
integration to the detailed calculation of the entire wave pattern, but it can more readily produce 
results at just a few locations. Its greatest advantage, however, is that along the centerline (z = 0) 
the amplitude and phase can be obtained at a specified R without iteration, and a single integration pass 
from Rg to R produces results at all intermediate R at which eigenvalues are calculated. This is possible 
because the saddle point is at g = 0 all along the centerline, and only Eq. (7.19) has to be used, and not 
Eqs. (7.12). We can also note that there is no real saving by using the approximate Eq. (7.22) in place 
of Eq. (7.19), because 3 a/33 has to be calculated in any case, and only the numerical integration of 
this derivative is eliminated. 

7.4 Superposition of point sources 

We can imagine sources of instability waves to occur not just as single point sources, but as 
multiple point sources and as distributed sources. For several discrete sources, the formulas of the 
preceding Section apply, and we just have to add the contributions from the various sources. We can use 
this same approach for distributed sources: The distributed source is represented by discrete, closely 
spaced, infinitesimal point sources.  In this Section, we apply this idea to line sources. 

We replace the function g (3 ) in Eq. (7.1) with a more general function 

g*(6*,x",z*) = (l/2Fr)u*(x",z*)A5'g(3) , (7.23) 

where Ug,   the source strength,  has the same dimensions as Uf,  and  Sg is the arc length along the source. 
We  substitute  Eq.  (7.23)  into Eq.  (7.1)  without  the time factor,   use  the definitions of Eq.  (7.3).  and 
arrive at 

Au(x,z)  =  (1/2iT)u3AU    g(g)exp(ix)dg (7.21(a) 
J~rc 

for t^e gontribution to u at x,z of an infinitesimal line source at x ,z .  In Eq. (7.24a), u = u*/u!, C 
= CgU]^/v , and s s s   s i  s 

X(3;S,z) =/ 5dx + g(z-2g) . (7.24b) 
X 

A finite-length source which extends from si =" (Sg.gg)^ to s2 = (23,23)3 will produce at x,z the velocity 

/• 3 2 -CO 

u(x,z)  =  (1/2TT)/    UgdSg/ g(g)exp(ix)dg  , (7.25) 

.Where the C^ integration proceeds along the line source. 

As the simplest possible example, we apply Eq. (7.25) to a 2D infinite-length line source, i.e., a 
source which extends from z—= to +» at a constant x . With g(g) = 1, so that all oblique normal modes 
have the same initial amplitude and phase,  we obtain 

CO ^^ 

u(x,z) = (1/277) ru3dZ3/exp(iX)dg  . (7.26) 

The integral over Zg must converge because the g integral is just the point-source solution Eq. (7 3) A 
physical interpretation of Eq. (7.26) is that Eq. (7.3) can be regarded as either the distribution of u 
with respect to z at the observation station x due to a single source at x.,0, or as the variation of u at 
the single observation point x,0 as the point source at x moves from z.^^to Z-»-K» . Consequently if 
the point-source solution is weighted by U3 and integrated with respect to z^, the resultant amplitude' and 
phase must be that produced by an infinite-length spanwise line source. 

At x=X3, the phase function X reduces to ^(z-Zg) and Eq. (7.26) becomes 

UgdZg) oos[g(g-2 )]dg . (7,27) 
-'—00 
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We recognize the g integral as the Dirac 6-function: 

oos[g(2-23)]dg = 2TI 6(g-2g)  , (T.28) 

Therefore, u(x ,z) = u as it should, and we see the reason for the factor Sir In the definition of the 
function g in Iqs. (7.3) and (7.23). Thus when applied to an infinite-length line source of constant 
amplitude A and of constant phase, Eq. (7.25) must yield the amplitude ratio A/Ag of a 2D normal mode. 
This property of the point-source solution offers a convenient check on numerical results. Furthermore, 
if u = A sln(B3^3) (standing wave) or Agexp(i^gZ3) (travelling wave), Eq. (7.25) will give the amplitude 
ratio of an oblique normal mode of spanwise wavenumber gg. Applications of Eq. (7.25) to finite-length 2D 
and oblique line sources have been given by Mack (1981a). 

7.5    Numerical and experimental results 

The wave pattern behind a harmonic point source of frequency F = 0.60 x 10" located at Rg = 185 has 
been worked out in detail by Mack and Kendall (1983). We shall quote a few results here. Figure 7.2 
gives the centerline amplitude distribution downstream of the source as calculated by numerical 
integration from Eq. (7.7) with g(g) = 1. The amplitude distribution of the 2D normal mode is shown for 
comparison, where Ag has been chosen to equal the amplitude at R = 630. The initial steep drop in the 
amplitude is reversed near the lower branch of the 2D neutral-stability curve, but this first minimum is 
followed by a broad second minimum before the sustained amplitude growth gets under way. The peak 
amplitude occurs at the upper-branch location of R = 1050. However, the magnitude of the peak amplitude 
is less than half of the normal-mode amplitude. The reduction in amplitude is due to the sideways 
spreading of the wave energy in the point-source problem. 

The wave energy also spreads in the y direction because of the growth of the boundary layer. This 
effect is not included in the calculation because of the use of parallel-flow eigenvalues, even though the 
correct Reynolds-number dependent eigenvalue have been used. In the point-source wave-packet problem, 
Gaster (1975) found that the boundary-layer growth could not be ignored, and he introduced a correction 
based on a simple energy argument. With the assumption that the wave energy is proportional to the square 
of the amplitude, A^ would be constant in the absence of damping or amplification or sideways spreading. 
This argument suggests that the amplitude from Eq. (7.7) be multiplied by R"''^ to correct for boundary- 
layer growth, and the result is shown in Fig. 7.2. This correction is sizeable, and if correct cannot be 
neglected. 

A characteristic feature of experimental phase measurements on the centerline is that if the phase is 
extrapolated backwards to zero the apparent location of the source is downstream of the actual source 
location. Figure 7.3 demonstrates why this is so. The phase initially rises at a slower rate, and it is 
only after an adjustment in the region where amplification starts that the phase then increases at the 
faster rate  of the measurements. 

The centerline amplitude distribution has also been calculated from Eq. (7.18) of the extended 
saddle-point method. Starting at about R = 650, the saddle-point results are virtually identical with 
those obtained from numerical integration in both amplitude and phase. Even the parallel-flow saddle- 
point method gives a good result to about the region of maximum amplitude, after which there is a slight 
departure. Consequently, Eq. (7.18) gives us a way to obtain the centerline amplitude accurately 
everywhere except quite close to the source with only a little more calculation than is needed to obtain 
the normal-mode A/AQ. 

The important question now is whether or not the amplitude distribution of Fig. 7.2 has anything to 
do with an experimentally determined amplitude. The answer is given in Fig. 7.1 [Mack and Kendall 
(1983)]. For the same conditions as the calculations, a hot-wire anemometer was moved downstream in a 
Blasius boundary layer. At each Reynolds number station, the maximum fluctuation amplitude in the 
boundary layer was determined by a vertical traverse of the hot wire. The source strength was well within 
the range for which the response at the hot wire varied linearly with the source amplitude. The amplitude 
in Fig. 7.1 is the actual measured amplitude expressed as a fraction of the freestream velocity. The 
level of the calculated amplitude has been adjusted accordingly. The calculated amplitude increases more 
rapidly than in the experiment, but the Gaster correction for boundary-layer growth makes the two 
amplitude distributions identical up to about R = 890, where the measurements depart abruptly from the 
theory. This disagreement was traced to a favorable pressure gradient on the flat plate that started 
precisely at the point of departure. The good agreement in this one example of the calculation with the 
Gaster growth correction and the measurement in the zero pressure-gradient region, while hardly 
conclusive, does suggest that when dealing with wave motion over many wavelengths, the growth at the 
boundary  layer  cannot  be  neglected. 

The off-oenterline wave pattern is of considerable complexity, as shown by Gilev et al (1981). The 
peak amplitude occurs initially off centerline, and it is only well downstream of the source that it is 
found on the centerline. A typical calculated spanwise amplitude and phase distribution is shown in Fig. 
7.5. The complex evolution of the phase that appears in Fig. 7-1 is reproduced quite closely by Eq. 
(7.7), but the calculated off-centerline amplitude is less exact. Indeed, the saddle-point method, even 
in its extended form, fails to give off-oenterline amplitude peaks of sufficient magnitude, and only 
agrees well with the numerical-integration results after these peaks have disappeared. The parallel-flow 
saddle-point method fails badly in calculating the off-centerline wave pattern. The difficulty of 
correctly computing the amplitude with the present methods is probably related to the complicated nature 
of the eigenfunctions, which in much of the wave pattern bear little resemblance to conventional normal- 
mode eigenfunctions. In order for amplitude calculations to agree as well with experiment as do the phase 
calculations, it will be necessary to include the eigenfunctions in the calculations. However, even with 
this limitation, the numerical-integration method does remarkably well in reproducing the measured wave 
pattern, and provides another example of the utility of linear stability theory in dealing with point- 
source  problems. 
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PART B.  COMPRESSIBLE STABILITY THEORY 

8.  FORMULATION OF COMPRESSIBLE STABILITY THEORY 

8.1 Introductory remarks 

The theory of the stability of a compressible laminar boundary layer differs sufficiently from the 
incompressible theory to warrant being treated as a separate subject. The basic approach and many of the 
ideas are the same, and for this reason the incompressible theory can be regarded as an indispensable 
prelude to the study of the compressible theory. For example, all of the material in Sections 2.2, 2.3 
and 2.6 applies also to the compressible theory. The motivation for the study of the stability of 
compressible boundary layers is the problem of transition to turbulence, just as it is for the 
incompressible theory. However, the relation of stability to transition is even more of an open question 
than at low speeds. Experiments have been performed that firmly establish the existence of instability 
waves in supersonic and hypersonic boundary layers [Laufer and Vrebalovioh (I960), Kendall (1967,1975)], 
but there are none that really demonstrate when, and under which circumstances, transition is actually 
caused by linear instability. A series of stability experiments with "naturally" occurring transition in 
wind tunnels has been carried out by Demetriades (1977) and Stetson et al. (1983,198il), but many of their 
observations have yet to be reconciled with theory. Mention must also be made of the remarkable flight 
experiment by Dougherty and Fisher (1980) that is probably the best evidence to date that transition in a 
low-disturbance environment at supersonic speeds is caused by laminar instability. For further 
information on the intricacies of transition at supersonic and hypersonic speeds, we recommend a study of 
the report by Morkovin (1969). 

The first attempt to develop a compressible stability theory was made by Kuchemann (1938). 
Viscosity, the mean temperature gradient and the curvature of the velocity profile were all neglected. 
The latter two assumptions later proved to have been too restrictive. The most important theoretical 
investigation to date of the stability of the compressible boundary layer was carried out by Lees and Lin 
(1916). They developed an asymptotic theory in close analogy to the incompressible asymptotic theory of 
Lin (1945), and, in addition, gave detailed consideration to a purely inviscid theory. The Rayleigh 
theorems were extended to compressible flow, and the energy method was used as the basis for a discussion 
of waves moving supersonically with respect to the freestream. The quantity D(pDU), where D = d/dy, was 
found to play the same role in the inviscid compressible theory as does D^u in the incompressible theory. 
As a consequence, the flat-plate compressible boundary layer is unstable to purely inviscid waves, quite 
unlike the incompressible Blasius boundary layer where the instability is viscous In origin. 

The close adherence of Lees and Lin to the incompressible theory, and the inadequacy of the 
asymptotic theory except at very low Mach numbers, meant that some major differences between the 
incompressible and compressible theories were not uncovered until extensive calculations had been carried 
out on the basis of a direct numerical solution of the differential equations. In the incompressible 
theory, it is possible to make substantial progress by ignoring three-dimensional waves, because a 2D wave 
will always have the largest amplitude ratio at any Reynolds number. This is no longer true above about a 
Mach number of 1.0. A second notable difference is that in the Incompressible theory there is a unique 
relation between the wavenumber and phase velocity, whereas in the compressible theory there is an 
infinite sequence of wavenumbers for each phase velocity whenever the mean flow relative to the phase 
velocity is supersonic [Mack (1963,1961,1965,1969), Gill (1965)]. These additional solutions are called 
the higher modes. They are of practical importance for boundary layers because it is the first of the 
additional solutions, the second mode, that is the most unstable according to the Inviscid theory. Above 
about M^ = i\,  it Is also the most unstable at almost all finite Reynolds numbers. 

Subsequent to the work of Lees and Lin, a report of Lees (19t7) presented neutral-stability curves 
for Insulated-wall flat plate boundary layers up to M^ = 1.3, and for cooled-wall boundary layers at M, = 
0.7. This report also included the famous prediction that cooling the wall acts to stabilize the boundary 
layer. However, this prediction must be considerably modified because of the existence of the higher 
modes. These modes require for their existence only a region of supersonic relative flow, and thus cannot 
be eliminated by cooling the wall.  Indeed, they are actually destabilized by cooling [Mack (1965,1969)]. 

8,2 Linearized parallel-flow stability equations 

A comprehensive account of the compressible stability theory must start with the derivation of the 
governing equations from the Navler-Stokes equations for a viscous, heat conducting, perfect gas, which in 
dimensional form are 

—i + u*  i = i-  il 
3t*   j 3l^  p* 3^ ' (8.1a) 

J       J 

3t* + 3^*'^P u ) = 0 , 
J (8.1b) 

P*c*( 

where 

J     J     J 
-ft  _ft ft-ft 
P  = P R T   , (8.Id) 

_*    _ft 
_ft   1  3u.    3u. 

''J ^'^^"J^^       ' (8.2a) 
J     1 

^j = '^  ^j + ¥'    - ^  >\K - P ]5y  • (8.2b) 
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Again asterisks denote dimensional quantities, overbars time-dependent quantities, and the summation 
convention has been adopted as in Section 2. The equations are, respectively, of momentum, continuity, 
energy and state. The quantities which did not appear i^n the incompressible^equations are T , the 
temperature; K*, the coefficient of thermal conduotivi|y; R , the gas constant; c^, the specific heat at 
constant volume, which will be assumed constant; and \ , the coefficient of second viscosity (= 1.5 x bulk 
viscosity coefficient). 

The stability equations are obtained from the Navier-Stokes equations by the same procedure that was 
used for incompressible flow in Section 2.1. First, all quantities are divided into mean flow and 
fluctuation terms.    With primes used to denote fluctuations of the transport coefficient. 

_t        •        » _•      „»        • 
u=tJ+u, p=P+p, 

T=T+0, p=p+r, 

_» » t»       _» « t* _» » i« 
U=|J+|J ,K=K+K > X       -   X      '*'   X 

(8.3) 

where the first variable on each RHS is a steady mean-flow quantity, and the second is an unsteady 
fluctuation. 

Next, the equations are linearized, the mean-flow terms are subtracted out, and, finally, the 
parallel-flow assumption is made. The resulting equations are then made dimensionless with respect to the 
local freestream velocity U^^, a reference length L , and the freestream ^values ^f all state varia^l|s 
(including the pressure). Both viscosity coefficients are referred to p ]^, and K is referred to c^v^, 
where o * is the specific heat at constant pressure. The transport coefficients are functions only of 
temperature, so that their fluctuations can be written 

y = (dU/dT)9,   K' = (dK/dT)e,   X' = (dVdT)e . (8.1) 

Therefore,   \i , K and   A   in   the   following   equations,    along   with  p,    are   mean-flow   quantities,    not 
fluctuations.    The dimensionless,  linearized x-momentum equation is 

dx dx dy 3z Jl   3x 

2 2 2 2 2 
,1,„     3u,     /3u,3u,3v,3w, 

+ ;^[2p —^ + u(—2+—2              •* 
3x 3y 3z 3x3y     3x3z 

2 2 2 
,   2,,     N^3 u     ,   3 V       ,   3 w ,    ,   dy  dx   ,3u   ,   3v, 

^       ^'^     ^y     ^^^    ^ ^ ^'^   ^^ 

+ f^(4  e   +f f)  +4f f e]     . (8.5a) dT    ^^2 dy  3y ^^2  dy  dy 

The y-momentum equation is 

The z-momentum equation is 

2 
,3v , „ 3v  , „ 3v,     1 3p  , 1 n_  3 V 

P^3^ + " 31^ + " 3¥> = - ^ 3^ ^  *" ^7 

2     2     2     2 2     2 ,3v  ,3v  ,3u   3w,, 2.,  . ,3 u  , 3 v 
^2    „ 2    3x3y   3y3z    3      3x3y   „ 2 
dx    dz       ^ ^ ^   3y 

+ ^\+  ^ r?-^-^ . du 3e_ , dw _3e 
SySz-*   dT ^     dy 3y   dy 3x   dy 3z •' 

2_,dX  du, dT ,3u  3v  3w s i 
■*" SMT  dl^ dy ^3x + 3y + 3z '' J  " (8.5b) 

,3w  , ,, 3w  ,  dw , „ 3w,     1 3p 
PCTT- +U-;^ +V3— + W -5—) = - —= if^ 
•^ 3t     3x     dy 3z      ^ 3z 

1            ^2                -,2 ^2              2              2 ,   1   ,_     3 w     ,      ,3  w ,   3  w         3  V     .   3  u  , 
+ rr  [2]i —T-    + u(—o + —T"    + V^    + T~^ ) R       ^  2              ,   2 .2         3y3z       3x3z' 

3z                3y 3x 

2            2 2 
,   2   ,-      , ,3  w   ,   3  V ,   3   u  ,    ,   du  dT   ,3w   ,   3v V 

3               \   2        3y3z 3x3z          dT  dy     3y        dz 

+  dH(Ag^dW3i d^dTdW                                                                                            33^) 
dT     ,2            dy  3y ^^2   dy  dy 

The continuity equation is 
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The energy equation is 

|f*»<s*$-£'*"lf*"|f-S-0. "•="" 

IE r.s^ + 3^4.i^,ldi<d^„ ^2 dK dT ae 
'''^  3x2   3y2 %,2 + K dT ^^2 S + 1^ dT d^ 3^ 

2   ,^2 

2    ,   „, 2 

X ^^2 -dy- -^ ■ '^' -'"1 R '■-►' dy '3y 

2 
dW ,3v  3w, ^ dy ,dU. . , dy ,dW, 

The equation of state is 

+ ^^  dy   '•3Z  + By-*   + dT   <-d^)   ^  + dT  %^   ^^   ' (8,5e) 

r/P + e/T . (8.5f) 

Previously undefined quantities which appear in these equations are M,, the local Mach number at the edge 
of the boundary layer; Y, the ratio of specific heats; and a = Opy'A", the Prandtl number, which is a 
function of temperature. Equations (8.5) are the compressible counterparts of the incompressible 
stability equations (2.5), and are valid for a 3D disturbance in a 3D mean flow. It should be noted that 
unlike most compressible stability analyses, Eq. (8.5e), the energy equation, is valid for a variable 
Prandtl number. The constant Prandtl number form is recovered by replacing K with y in the three terms 
in which it occurs. 

The boundary conditions at y = 0 are 

u(0)  = 0,  v(0)  = 0,  w(0)  = 0, 6(0)  = 0  . (8.6a) 

The boundary conditions on the velocity fluctuations are the usual no-slip conditions, and the boundary 
condition on the temperature fluctuation is suitable for a gas flowing over a solid wall. For almost any 
frequency, it is not possible for the wall to do other than to remain at its mean temperature. The only 
exception is for a stationary, or near stationary, crossflow disturbance, when 9(0) = 0 is replaced by 
De(0) = 0. The boundary conditions at y * ■» are 

u(y), v(y), w(y), p(y), e(y) are bounded as y ^ » . (8.6b) 

This boundary condition is less restrictive that requiring all disturbances to be zero at infinity but in 
supersonic flow waves may propagate to infinity and we wish to include those that do so with constant 
amplitude. 

8.3 Normal-mode equations 

We now specialize the disturbances to normal modes as in Section 2.3: 

[u,v,w,p,r,e]'f = [a(y),v(y),w(y),P(y),P(y),§(y)]Texp[i(/-adx+3dz-(^t)] ,   (8.7) 

where we have adopted the quasi-parallel form of the complex phase function. The normal modes may grow 
either temporally or spatially or both, depending on whether oj or 1^, or both, are complex. The 
discussion in Section 2.3 applies to the compressible theory just as well as to the incompressible theory. 

When Eqs.  (8.7) are substituted into Eqs.  (8.5),  and the same linear combinations of the x and z 
momentum equations formed as in Section (2.iJ)   for the variables 

Su =  aQ + gw ,      aiJ = aft - 3u  , (8.8) 

we obtain a system of equations which are the compressible counterparts of Eqs. (2.36). The momentum 
equation in the direction parallel  to the wavenumber vector k is 

p[i(aO+3W-a))5u +  (aDU+BDW)v]  = - i(a2+e2) (g/yM> 2) 

+   \  [aD^u +  (a2+32)(iD9-25u)]+   4^  (a^+g^) (iD^-aS) 
1      H 2 

+   R ^dT   (oiD2u+eD2w)e + ^  D6 + ^DTe)(aDU+eDW) 
j dT 

+ f DT[aDu + i(a2.B2)^]). ^^^^^^ 

The y momentum equation is 

i P (aU+BW-O))^ = - Dg/YM^^ ^ ^ ^^^Z^ ^  ^-^j _ („2^g2j,j 

*3 ^(D^v+la5) + I [i^(aDU+eDW)§ + 2^ DTD^ 
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The momentum equation in the direction normal to k is 

P[i(aU+3w-co)aw + (aDW-eDU)v] = ^ [SD^W - (a2+e2)aiJ] 

+ I [^ DT aDvi + ^ (aD^W-PD^U)? + (^ Dg + ^ DT 6 )(aDW-gDn)]     . (8.9c) 
dT 

The continuity equation is 

i (aO+gW-a))r +P(Dv+iau)  + Dp 0 = 0  . (8.9d) 

The energy equation is 

p[i (aU+gW-a))e + DT v] = - (y - 1) (D^+iSiu) 

+ ^ {D2g -  (a2^2). , 1  [dK    O2T , d!| (Dx)2]g , i d^ DT D§} 

dT 
+ Y(Y - DM^ i {i2p(aDU+gDW)^ + ^    (DD^+DW^)^ 

1 R   "^^    '^     ' dT 

Z^  = aC + gw , Zg  =  DZ^   , Z3 = ^ 

Zi, =  f/YM^  , Z5 =  g  , Zg  =  Dj 

Zy = aw - BQ  , Zg  =  DZ^   , 

+ 'i^       [(aDU+BDW)aDu + (aDW-BDU)aDw]} . (8.9e) 

The equation of state is 

p = P/p + e/T , (8.9f) 

To reiterate, in these equations the eigenfunotions of the fluctuations are functions only of y and are 
denoted by a caret or a tilde; the mean-flow velocities U and W are also functions of y, as are the other 
mean-flow quantities: densityp(= 1/T), temperature T, viscosity coefficients y and X , thermal 
conductivity coefficient K , and Prandtl number. The specific heats are constant. The reference velocity 
for U and W is the same as for R and M^,   and the reference length for y is the same as in R. 

8.4    First-order equations 

8. 4.1    Eighth-order system 

Equations (8.9) are the basic equations of the compressible stability theory, but are not yet in a 
form suitable for numerical computation. For this purpose we need a system of first-order equations as in 
Section 2.5.2  .     With  the  dependent variables  defined  by 

(8.10) 

Equations (8.9) can be written as eight first-order differential equations 
8 

DZiCy) = ZI Hp^  ^^(y) ,   (i = 1, 8) , (8.11) 
j = l 

and the fact that this reduction is possible proves that Eqs. (8.9) constitute an eighth-order system. 
The lengthy equations for the matrix elements are listed in Appendix 1. 

The boundary conditions are 

Zi(0)  = 0   , Z,(0)  = 0   , Zc(0)  = 0   , Z,j{Q)  = 0   , 
^ ^ ^ ' (8.12) 

Z,(y)     , Z3(y)   , Z5(y)   , Z^(y)  bounded as y ^"    . 

8.4.2    Sixth-order system 

Equations (8.11) can be solved by the same numerical techniques as used for the fourth-order system 
of the incompressible theory. However, the fact that there are 16 real equations and four independent 
solutions means that the computer time required to calculate an eigenvalue is increased by several times. 
It is therefore important to know if it is possible to make use of a system of lesser order, as in the 
incompressible theory where the original sixth-order system could be reduced to fourth order for the 
determination of eigenvalues. We note that for a 2D wave in a 2D boundary layer, the system already is of 
only sixth order, as there can be no velocity component, either mean or fluctuating, in the z direction. 
Is there an exact reduction available from eighth to sixth order? The answer, unfortunately, as mentioned 
by Dunn and Lin (1955)  and explicitly demonstrated by  Reshotko (1962),   is no. 

The theory of Dunn and Lin (1955) achieved the reduction to sixth order by an order of magnitude 
argument valid for large Reynolds numbers. The motivation was to put the equations in a form where an 
improved 2D asymptotic theory could be applied to oblique waves in a 2D boundary layer. However, neither 
this theory, nor direct numerical solutions of the Dunn-Lin sixth-order system of equations, turned out to 
give adequate numerical results above a low  supersonic Mach number. 

We may observe from the coefficient matrix of Eq. (8.11) listed in Appendix 1 that the only term that 
couples the first six equations to the last two is agg. This coefficient comes from the last term of the 
energy equation (8.9e), and is one of four dissipation terms. It is the product of the gradient of the 
mean velocity normal to k and the gradient of the fluctuation velocity in the same direction. It was 
proposed by Mack (1969) to simply set this term equal to zero, and use the resultant sixth-order system 
for the calculation of eigenvalues. The numerical evidence, as discussed further in Section 10.4, is that 
except near the critical Reynolds number this approximation gives amplification rates within a few percent 
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of those obtained from the full eighth-order system,   and Is most accurate at higher Mach numbers. 

8.6    Uniform mean flow 

In the freestream U = U^, W = Wp T = 1, y = 1, K= 1/a ^ all y derivatives of mean-flow quantities 
are zero, and Eqs. (8.11) reduce to a system of equations with constant coefficients. In spite of the 
greater complexity of these equations compared to those for incompressible flow, we are still able to 
arrive at analytical solutions. The lengthy derivation is given in Appendix 2 [Hack (1965a)]. The exact 
freestream solutions are the ones to use to calculate the initial values for a numerical integration of 
Eqs. (8.11), but they do not lend themselves to a ready physical interpretation. For this purpose, we 
examine the limit of large Reynolds number.    The characteristic values simplify to 

\^2 = + [a2+|32.M2^(aU^+3H^-a))2]1/2   ^ (8.13a) 

^3,1, = + [iR(aU^+BWi-a))]1/2  ^ (8,13b) 

\,6 = * [ioR(aU^ + 3W^-0))]''/2   , (8.13c) 

\,8 =  ^3,t  • (8.13d) 

We can now Identify our solutions as, in order, the inviscld solution, the first viscous velocity 
solution, a viscous temperature solution, which is new and does not appear in the incompressible theory, 
and the second viscous velocity solution. We shall only use the upper signs in what follows, as these are 
the solutions which enter the eigenvalue problem. 

The components of the characteristic vector of the inviscld solution are 

A/1) = -i(a2+B2)1/2 ^ ^g_^^^^ 

Ag^l) = [a2+B2_M2(„o^^g,,^_^) 2-] 1/2/(^2^^2) 1/2 (S.lltb) 

A^^l) = i(aU^+3W,-cu)/(a2+B2)1/2 , (8.14c) 

A5^^^ = i(Y-1)M2(aU^+BW^-a,)/(a2+B2)1/2 ^ (8.11|d) 

The normalization has been changed to correspond to the incompressible solutions of Eq. (2.50). It can be 
noted that these expressions are correct when we set M, = 0. 

The components of the characteristic vector corresponding to the first viscous velocity solution are 

A/^^ = 1 . (8.15a) 

Ag^S) = i/[iR(aU,+BW^-(o)]1/2 _ (8.15b) 

Ai,^3) = 0 ,  Ag^S) , 0 . (8.15c) 

This solution is identical to the A^ incompressible solution only in the limit of large Reynolds numbers. 

The components of the characteristic vector corresponding to the viscous temperature solution are 

A/^^ = 0 . (8.16a) 

Aj^S) = -l(aU,+BW,-oj)l''2/(iaR)1''2 ^ (8.16b) 

Ai,^^^ = 0 ,  Ag^S) = 1 , (8^,g^) 

The components of the characteristic vector corresponding to the second viscous velocity solution are 

A/7) = O,  A3(7)=O,  A/7)=O,  A5(7) = O,       (8.17a) 

A?^''^ = ^ ' (8.17b) 

Ag(7) = -[a2+e2+ii,(„u^^.gVj^_^)]1/2 ^ (8.17c) 

This solution is exact and is the same spanwise viscous wave solution as in incompressible flow. 

We may observe that the viscous velocity solutions have only fluctuations of velocity, not of 
pressure or temperature. The velocity fluctuations in the x,z plane are in the direction of tc for the 
first solution, and are normal to k for the second solution which is periodic only in time. The viscous 
temperature solution has no velocity fluctuations in the x,2 plane, or pressure fluctuations. We may 
regard these solutions as the responses to sources of u, w and 9, and to emphasize this fact the 
respective solutions have been normalized to make these quantities unity. The second viscous velocity 
solution still has the interpretation of a normal vorticity wave, as in incompressible flow, but this wave 
cannot exist as a pure mode in the boundary layer (Squire mode) because of the a^o dissipation term that 
couples the latter two of Eqs. (8.11) to the first six equations. 

9.   COMPRESSIBLE INVISCID THEORY 

9.1 Inviscld equations 

In compressible flow, even flat-plate boundary layers have inviscld instability, and this instability 
increases with Increasing Mach number.  Therefore, the inviscld theory is much more useful in arriving at 
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an understanding of the instability of compressible boundary layers than it is at low speeds. Indeed the 
initial detailed numerical working out of the viscous theory [Mack (1969)] was greatly facilitated by the 
insight offered by the inviscid theory.  In the limit of infinite Reynolds number, Eqs. (8.9) reduce to 

p[i(aU+6W-oj)au + (aDU+BDW)v]  = - Ka^+g^) (p/TM^) .                        (9.1a) 

ip(au+BW-a))v = -Dp/YMf , (9.1b) 

i(aU+eW-Cij)aw + (aDW-BDU)v = 0 , (9.1c) 

i(aU+BW-a))f + p(Dv+iau) + Dp v = 0 , (9.Id) 

p[i(ciU+3W-a!)e + DT v] = -(Y-1) (D0+i5u)  , (9.1e) 

p = r/p + 8/T . (9.If) 

We note that the w momentum equation, Eq. (9.1c), and the energy equation, Eq. (9.1e), are decoupled from 
the other equations. Therefore we can eliminate Su and r from the latter to arrive at the following two 
first-order equations for v and p: 

(aU+BW-ai)Dv = (ctDU+gDW)v + i{a^+^^)[r -  M^(aU+BW-a))/(a2+e2) ](g/YM2) (9.2a) 

D(p/YM,2) = -ip(aU+BW-a))v . (9.2b) 

These equations are the 3D compressible counterparts of Eqs. (3.12). The boundary conditions are 

0(0} = 0  ,   0(y) is bounded as y ^ -<>. (9.3) 

The inviscid equations can be written in a simplified form if we Introduce the Mach number 

M = (aU+BW-aj)M,/(a2+32)1/2j1/2 (g^^j 

For a temporal neutral jjave, M is real and is the local Mach number of the mean flow in the direction of 
the wavenumber vector k relative to the phase velocity *'j,/k. In all other cases, M is complex, but even 
so we shall refer to it as the relative Mach number.  In terms of M, Eqs. (9.2) simplify to 

D[v/(aU+6W-aj)] = X{)-H^)(p/yii^)     , (9.5a) 

Dp = -±yM^{a^+B^)W(.aV+e,V-a))   . (9.5b) 

We observe that these equations are Identical to two-dimensional equations (3= 0) when written in the 
tilde variables of Eq. (2.37). Therefore, inviscid instability is governed by the mean flow in the 
direction of Ic, just as for incompressible flow. Either Eqs. (9.5) or (9.2) can be used for numerical 
integration, but the latter have the advantage that v is a better behaved function near the critical point 
than  is  v/(aU+BW-a)). 

Equation (9.5a) is the familiar linearized pressure-area relation of one-dimensional flow. The 
quantity v/(aU+0W-a)) is the amplitude function of the streamtube area change. The other flow variables 
can be written in a similar manner as 

u =  i[DU ^ +r(Su-ai)^-D('J_'^]   , (9.6a) 
aU-u   5 ^_j^  \5u-aj/ 

=  i[DT_-^ -  (Y-1)T—roD/ z^\]     , (9.6b) 

r = i[Dp,^-p-^D(-=y]     , (9.6c) au-o) 

w = IDW   zr^—    , (9.6d) 
aU-O) 

where we have used the tilde variables for simplicity. When the second terms of these equations are 
written with p In place of v/(aU-(D), they can be readily recognized as the linearized momentum equation, 
the isentroplc temperature-pressure relation, and the isentropic density-pressure relation, respectively. 
The first terms are in the nature of source terms, and arise from the combination of a vertical 
fluctuation velocity and a mean shear. Because Eq. (9.6d) is an equation for the vertical vortioity 
component aw, only the source term is present. 

A manipulation of Eqs.   (9.1)   leads to a single second-order equation for v: 

D{[(aU-a))Dv-aDU0]/(1-M2)}  -  (a^+P^)(5u-a))v =  0   , (9.7) 

This equation, which in 2D form was used by Lees and Lin (1946), is the 3D compressible counterpart of the 
Rayleigh equation.  A second-order equation for v/(aU-(o) follows directly from Eq. (9.5): 

D2[V(5u-a))] + D{ln[M2/(1-M2)]}D[v/(Su-w)] - a^(UH^)[.<f/{aU-ai)'i  = 0 .        (9.8) 
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The corresponding equation for p is 

D^p - D[ln(M2)]Dp - {a^+?,^) i^-H^)^  = 0 . (9.9) 

9.2 Uniform mean flow 

In the freestream, Eq. (9.9) reduces to 

DH  - (a2+e2)(i_H2)g ^ Q ^ ^^^^^^ 

The solution which satisfies the boundary condition at infinity is 

pAM^^ ^ i[(aU+6W-o))/(a2+32)1/2]gxp[_(a2+g2)1/2(,_H2)1/2y-|  _ ^g^^^^ 

which agrees with Eq. (8.11(c). Equations (9.11) and (8.14b) provide the initial values for the numerical 
integration. 

The fre_estream solutions may be classified into three groups: subsonic waves with H^ < 1; sonic 
waves with M^^ = 1; and supersonic waves with M£ > 1. Neutral supersonic waves are Mach waves of the 
relative flow, and can exist as either outgoing or incoming waves. True instability waves, which must 
satisfy the boundary condition at y = 0 as well as Infinity, are almost all subsonic, but eigenmodes which 
are supersonic waves of the outgoing family in the freestream have been found for highly cooled boundary 
layers [Mack (1969)]. A combination of incoming and outgoing waves permits the boundary condition at y = 
0 to be satisfied for any combination of a, g and co, as pointed out by Lees and Lin (1946). It is when 
only one family of waves is present that we have an eigenvalue problem. The combination of both families 
is the basis of the forcing theory presented in Section 11. 

9.3 Some mathematical results 

The detailed study of the two-dimensional inviscid theory carried out by Lees and Lin (1946) 
established a number of important results for temporal waves. Lees and Lin classified all instability 
waves as subsonic, sonic, or supersonic, depending on whether the relative freestream Mach number M- is 
less than, equal to, or greater than one.  Their chief results are: 

(i) The necessary and sufficient condition for the existence of a neutral subsonic wave is that there is 
some point y^ > y^^ in the boundary layer where 

D(PDU) = 0 , (9.12) 

and y^ is the point at which U = 1 - 1/M^. The phase velocity of the neutral wave is c , the mean 
velocity at yg. This necessary condition is the generalization of Rayleigh's condition for incompressible 
flow that there must be a point of inflection in the velocity profile for a neutral wave to exist. The 
point yg, which plays the same role in the compressible theory as the inflection point in the 
incompressible theory, is called the generalized inflection point. The proof of sufficiency given by Lees 
and Lin requires M to be everywhere subsonic. 

(ii) A sufficient condition for the existence of an unstable wave is the presence of a generalized 
inflection point at some y > y^, where y is the point at which U = 1 - l/M,. The proof of this condition 
also requires M to be subsonic. ' 

(iii)  There is a neutral sonic wave with the eigenvalues a = 0, c = o = 1 
o I/M1 

(iv) If M < 1 everywhere in the boundary layer, there is a unique wavenumber a„ corresponding to c for 
the neutral subsonic wave. ^     "^   ^    s 

Lees and Lin obtained these results by a direct extension of the methods of proof used for 
incompressible flow. The necessary condition for a neutral subsonic wave was derived from the 
discontinuity of the Reynolds stress T = - <uv> at the critical point y^. As in incompressible flow, T 
IS constant for a neutral inviscid wave except possibly at the critical point.  For u. = 0, 

f(yo+0) -T(y(,-0) = (Tr/a)[D(pDU)/DU](j<v|>  . (9.I3) 

^i"n2^,°" l^.'^3^ ^^ ^^® ^^"^ ^^ ^1- ^3.9) in the incompressible theory except that D(pDU) appears in place 
. f'^ff® '' "-^ ^^7 ^^ ^^^ "^^^ ^""^ ^" ^^^ freestream by the boundary conditions for a subsonic 

wave, It follows that D(pDU) must be zero at y . We may also note that for a neutral supersonic wave, 
where c < 0 andT(y^+0) = (a2/2)(M2-i)1/2 f^^^ ^he freestream solutions, the discontinuity at the 
critical point must equal  this value  of T  and  the  phase  velocity must  be  other  than U . 

At this point we can examine the numerical consequences of the finding that neutral and unstable 
waves depend on the existence of a generalized inflection point. For the Blasius boundary layer, D^U is 
negative everywhere except at y = 0. However, for a compressible boundary layer on an insulated flat 
nitftVi ^ /^ /^ ^^'■° somewhere in the boundary layer. Consequently, all such boundary layers are 
noint .nd M Ti^°\ "^^^'; ^'^"^ 5'^ ^^*"^ *^^^ °3. the mean velocity at the generalized inflection 
nn^h M ? the phase velocity of the neutral subsokc wave, increases with increasing freestream Mach 
Sectron f? tLfT/JtT. "''!" the outward movement of the generalized inflection point. If we recall from 
Section 6 that inviscid instability increases for the adverse pressure-gradient Falkner-Skan profiles as 
will fnnll^r P°ff ."""^^^ away from the wall, we can expect in this instance that inviscid instability 
JuL\ increasing Mach number.    Figure_9.1  also includes both c„, the phase velocity of a 
neutral sonic wave, and the phase velocity for which M = -1 at the wall. In thg exact numerical solutions 
of the boundajy-layer equations which were used for Fig. 9.1, the wall is insulated and the freestream 
temperature  T^ is  characteristic of wind-tunnel  conditions.     The stagnation temperature is held constant 
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at 311°K until, with Increasing Mp T* drops to 50°K. For higher Mach numbers, T^ is held constant at 
50°K. 

For a wave to be subsonic relative to the freestream, and hence have vanishing amplitude at y^" even 
when neutral, c must be greater than o^. It is often said that only subsonic waves are considered in 
stability theory, but this statement is not entirely correct. It is true that the neutral subsonic wave 
with eigenvalues a.^,c^ can only exist when Cg > 1 - 1/M^. However, this does not rule out amplified and 
damped waves with c < 1 - ^/H■,, or even neutral supersonic waves with a c different from o^. Examples of 
such waves have been found, all of which satisfy the boundary conditions at infinity and so are solutions 
of the eigenvalue problem. For w^ ^ o, the amplitudes of outgoing amplified and incoming damped waves 
vanish at infinity regardless of the value of c; for neutral waves, the amplitude will only be bounded at 
infinity when c < c . What does turn out to be true is that the most unstable waves are always subsonic. 
Furthermore, for one class of waves, the amplified first-mode waves, the phase velocity is always between 
c and c_.  This result has important consequences. 

9.4 Methods of solution 

The methods for obtaining solutions of the inviscid equations for boundary-layer profiles have been 
patterned after corresponding methods in incompressible flow. Lees and Lin (1946) developed power-series 
solutions in a^, and also used the generalizations of Tollmien's incompressible solutions 

vi(y) = (y-yc)Pi(y-yo) • (9.i4a) 

VjCy) = P2(y-yc) + (T2/DU3)^ [D(PDU)]j;V,(y)ln(y-yg), y > yQ. (9.14b) 

For y < y , ln(y-yj,) = ln|y-yg|-iTr as for incompressible flow. The leading terms of F^ and ?2 are DU^, 
and T /DU„, respectively, so that v^ and V2 are normalized here in a different manner than in Section 3.1. 
These solutions have been worked out in more detail by Reshotko (1950). Both v and u have the same 
analytical behavior as in incompressible flow. What Is new here is the temperature fluctuation, which, 
according to Reshotko,   has the behavior 

§  =  1/(y-yc) +  (T/DU)g[D(pDU)]Qln(y-yg) +  .... (9.15) 

Hence, even for a neutral subsonic wave, where [D(PDU)]Q = 0 and v and u are both regular, § has a 
singularity  at  y^,. 

Two methods have been devised for the numerical Integration of the Inviscid stability equations. The 
first method [Lees and Reshotko (1962)] transforms the second-order linear equation into a first-order 
nonlinear equation of the Riceatl type. This equation is solved by numerical integration except for the 
region around the critical point, where the power series in y-yj, are used. The second method [Mack 
(1965a) is a generalization to compressible flow of Zaat's (1958) method. This method has already been 
described in Section 3.2. For neutral and damped solutions, the contour of integration is indented under 
the singularity.   Just as for incompressible flow. 

9.5 Higher modes 

9.5.1  Inflectional neutral waves 

Although_the Lees-Lin proof for neutral subsonic waves that Cg is a unique function of c^ was 
dependent o_n M^ < 1, and although Lees and'Reshotko (1962) mentioned the possibility that "^ may not be 
unique for M^ > 1, no serious consideration was given to the possibility of multiple solutions until the 
extensive numerical work of Mack (1963,1964,1965b) brought them to light. Similar multiple solutions were 
found independently at about the same time by Gill (1965, paper presented in 1964) in his study of "top- 
hat" jets and wakes. With the benefit of hindsight, it is actually rather easy to demonstrate their 
existence. The inviscid equations for v/(aU-aj) and p. Eqs. (9.8) and (9.9), quite evidently have a 
different analytical character depending on whether M is less than or greater than unity. It is 
instructive, as suggested by Lees [private communication (1964)], to consider a large enough so that the 
first-derivative term can be neglected. Then Eq. (9.8) reduces to 

D[^/(aU-a))] -a2(1-M2)[v/(aU-a))] = 0 . (9.16) 

When M^ < 1, the solutions of Eq. (9.16) are elll_ptic, and it is under this circumstance that Lees and Lin 
proved the uniqueness of a^. However, when M^ > 1, Eq. (9.16) becomes a wave equation, and as in all 
problems governed by a wave equation, we can expect there to be an infinite sequence of wavenumbers that 
will satisfy the boundary conditions. We may note that for a subsonic wave (this terminology still refers 
to the freestream) and the usual sort of boundary-layer profiles, the relative supersonic region occurs 
below the critical point where M < 0. 

If y is the y where M^ = 1, approximate solutions of Eq. (9.16) of the WKB type are 
-y 

v/(5U-a)) = i ainla^j^f {M^-^)'^^^<iy]  ,      Y < V^ , (9.17a) 
•'o 

^/(au-o)) = - iexp\.-a^^J  [:-H^)'^^^ay^,    y > yg . (9.17b) 

where Eq. (9.17a) follows from the boundary condition v(0) = 0. We have written Sg as a . The subscript 
s denotes a neutral subsonic solution as before; the subscript n refers to the multiple solutions. The 
constant in Eq. (9.17b) is chosen as -i to make p real and posi^tive for y > y^. Either sign is possible 
for y > y . Sijice p is continuous and finite at y = y^, D[v/(aU-u)], from Eq. (9.5a), must go to zero as 
y^y^ as does M^-1.  The derivative of v/(aU-a)) gives a factor (M^-1)^'^, and the 1 
factor of (M^-1)^^ can only come from the cosine having a zero at y^.  Consequently, 
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and 

C5snjf^("^-13 °°^[Sg„Jf^    (M'^-1)i/'=dy] = 0   , (9.18a) 

hni       (H2-1)1/2dy  =   (n-f)        ,        n =   1 ,2,3  (9.18b) 

Equation (9.18b) is the final result,  and demonstrates that there is an infinite sequence of discrete 
neutral wavenumbers with the phase velocity c .    The difference between adjacent values of a      is y sn 

"s(n+1)  - "sn =^(/    (M2-1)1/2<jyJ   . ^^^^^^ 
o ' 

We may also observe that according to Eq. (9.18b), the sequence of values of 2 S^JJ/TT is 1,3,5,7,..., This 
result was first noted and given a physical explanation by Morkovin [privati communication (1982)]. 
Because Eq. (9.16) is only approximate, the magnitude of 5^^^, the difference formula, and the ratio 
sequence are not expected to be numerically correct. However, as we shall see below, with an important 
exception they are either correct,   or approximately correct. 

When the numerical integration of Eqs. (9.2) is carried out for 2D waves with c = c and a. = 0 for 
the insulated-wall flat-plate boundary layers described in Section 9.3, the a which are found by the 
eigenvalues search procedure are shown in Fig. 9.2. The solution for each n will be referred to as a 
mode: n = 1 is the first mode, n = 2 the second mode, etc. The wavenumbers of the first mode were first 
computed by Lees and Reshotko (1962). With c = Cg, a y^ where M^ = i occurs first at M, = 2.2 (y = 0). 
With increasing M^ the relative sonic point y^ moves out into the boundary layer, and a varies in 
inverse proportion to y^ as required by Eq. (9.18b). No higher modes with c = o„ coaVk be found 
numerically for M^   < 2.2,   in agreement with the theory given above. 

A prominent feature of Fig. 9.2 is that the upward sloping portion of the first-mode curve between M. 
= 2 and 4.5 is in a sense continuous through the other modes, i.e., there is a Mach number range for each 
mode where the a^^ vs. M. curve has a positive slope. The end point of this region for one mode is close 
to the starting point of a similar region for the next higher mode. The approach becomes closer as M, 
increases. The significance of these intervals of positive slope is that they provide the exceptions to 
the correctness, or approximate correctness, of the results given by, or deduced from, Eqs. (9.18b). 
Indeed we could well identify these modes as the "exceptional" modes. 

With the wavenumbers of the multiple neutral waves established, the next step is to examine the 
elgenfunctions. For this purpose, the eigenfunction g/YM| is shown in Fig. 9.3 for the first six modes 
at M^ = 10. The first thing to note is that the number of zeroes in g is one less than the mode number n. 
For example, the second mode has one zero, and p(0) is 180° out of phase with p(6); the third mode has two 
zeroes and p(0) is in phase with p((5). The number of zeroes in p(y) is the surest identification of the 
mode under consideration. By keeping track of the phase difference between 5(0) and g(6), it is possible 
to determine when there is a change from one mode to another. 

The appearance of the elgenfunctions in Fig. 9.3 confirms the simple theory given above: there is an 
infinite sequence of periodic solutions in the supersonic relative flow region which can satisfy the 
boundary conditions. The magnitude of p(0) is a minimum for the fourth mode [p(6) is the same for all 
modes]. Since the fourth mode at M^ = lo is on the upward sloping portion of the eigenvalue curve in Fig. 
9.2, this is another indication of the special nature of such neutral solutions. For other modes, 
p(0)/p(6) tends to become large away from n = it,   and tends to infinity as n^^ . 

There is one important difference between the simple theory and Fig. 9.3. According to the theory, 
P(6) IS positive for all modes; there are no zeroes in the interval y > y and the number of zeroes 
in y < y^ increases by one for each successive mode. We see from Fig. 9.3 that §(5) is negative for n > 
1, and the number of zeroes in y < y^ is the same for n = 5 as for n = it. The total number of zeroes 
increases by one from n = 4 to n = 5 only because of the zero in y > y , However, we note that the 
progression of zeroes is correct in the supersonic region if we exclude the mode n = 4. This 
"exceptional" mode is extraneous to the simple theory, and preserves something of a first-mode character 
which probably betrays a different physical origin from the other modes. Indeed, the other higher modes 
are nothing more than sound waves which reflect back and forth between the wall and the sonic line of the 
relative flow at y = y as first suggested by Lees and Gold (1964). Morkovin's theory is based on this 
Idea, and its duplication of the wavenumber ratio sequence 1,3,5,... attests to its correctness. The 
"exceptional" modes are not part of this theory; they are perhaps vortioity waves associated with the 
generalized inflection point as are incompressible and low Mach number first-mode waves. In this view 
the modes which have been identified in Figs. 9.2 and 9.3 as first-mode waves for M, > 5 are not first- 
mode waves at all; this distinction is reserved for the modes whose wavenumbers increase monotonically 
with increasing M^.    However,  we shall continue to refer to n =  1   as the first mode. 

9.5.2    Noninflectional neutral waves 

A further consequence of a region of supersonic relative flow in the boundary layer is the existence 
of a class of neutral waves which is completely different from anything encountered in the incompressible 
theory. These waves are characterized by having phase velocities in the range 1 ^ o ^ 1 + l/M, For each 
phase velocity there is an infinite sequence of wavenumbers, just as for the inflectional neiltral wal^ 
A wave with c = 1 is at jest with respect to the freestream; a wave with c = c„, = 1 + I/M, propagates 
downstrggpi relative to U^ with the freestream speed of sound. The Lees-Lin neutral sonic wave propagates 
UP?tre&lp relative to U^  with  the freestream speed of sound, f-    t' e 

All of the 1 - c - 1 + 1/M, waves are subsonic waves, and, because D(pDU) = 0 in the freestream. 
there is no discontinuity in the Reynolds stress and the necessary condition for the existence of a 
subsonic neutral wave is satisfied. Unlike the inflectional neutral waves, D(PDU) does not have to be 
zero in the boundary layer, and the 1 <   c 1   1 + 1/M, waves exist for any boundary layer subject only to 
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the requirement that M^ > 1 somewhere. The importance of the c=1 neutral waves is that in the absence of 
an interior generalized inflection point they are accompanied by a neighboring family of unstable waves 
with o < 1. Consequently, a compressible boundary layer is unstable to inviscid waves whenever M > 1, 
regardless of any other feature of the velocity and temperature profiles. 

If we examine the inviscid equations (9.2), we see that when o > 1 they are no longer singular; 
i.e., there is no critical layer. Even when 0=1, and the critical layer is in a sense the entire 
freestream, Eq. (9.2a) is still not singular because DU/(U-1) and p(y)/(U-1) both have finite limits as 
y^-y^. We call this class of solutions the noninflectional neutral waves. These waves persist to low 
subsonic Mach numbers, because, except at M^ = 0, it is always possible to find a o large enough so that 
M = -1 somewhere in the boundary layer. 

The approximate theory of the preceding Section applies to the noninflectional neutral waves just as 
well as to the inflectional neutral waves provided the initialization is changed for c = 1 to make v/(oiU- 
Q)) finite in the freestream. This change is needed because with c = 1 the wave motion is confined to the 
boundary layer and v must be zero for y >y^. An infinite sequence of wavenumbers is obtained with the 
spacing given by Eq. (9.19), but since c is different from c^ the numerical values are not the same as for 
the inflectional waves. The wavenumbers obtained from the numerical integration with o = 1 are shown in 
Fig. 9.4 as functions of Mach number. These wavenumbers are denoted by a^^, where the first subscript 
refers to c = 1, and the second is the mode number. There is now no portion of any wavenumber curve with 
a positive slope, and the spacing agrees reasonably well with the approximate formula. The discrepancy is 
about ^0%  for the first two modes, and decreases to about 1$ for the fifth and sixth modes. 

c = 1 at 
rixed as 

unlike 

the inflectional neutral waves where the modes on the upward sloping portions of the wavenumber curves 
interrupt the orderly sequence, and where an outer zero appears in the eigenfunotions for n > it. 

The numerical results for 1 < o < 1 + 1/M^ are similar to those presented for c = 1. Since these 
waves have no neighboring unstable or damped waves, they are of less importance in the inviscid theory 
than the other neutral waves. Consequently, these waves will not be considered further, and the term 
noninflectional neutral wave will refer only to a c = 1 wave. However, we might mention that the viscous 
counterparts of the c > 1 waves, which are damped rather than neutral, do have a role to play in certain 

cases. 

9.6 Unstable 2D waves 

A detailed discussion of the eigenvalues of amplified and damped waves as a function of Mach number 
for the first few modes has been given by Mack (1969). What we are mainly interested in here is the 
maximum amplification rate of the various modes, and this is shown in Fig. 9.6, where the maximum temporal 
amplification rate is given as a function of Mach number up to M^ = 10. The corresponding frequencies are 
shown in Fig. 9.7. We see from Fig. 9.6 that below about M^ = 2.2 the family of boundary layers we are 
considering is virtually stable to inviscid 2D waves, and that above M^ = 2.2 the second mode is the most 
unstable mode. The latter result holds for 2D waves in all boundary layers that have been studied, and is 
one of the features that makes supersonic stability theory so different from the incompressible theory. 
Not only is there more than one mode of instability, but it is one of the additional modes that is the 
most unstable. Above M^ = 6.5, the first mode is not even the second most unstable mode. The second-mode 
amplification rates can be appreciable. At M^ = 5, the amplitude growth over a boundary-layer thickness 
is about double what is possible in a Blasius boundary layer at the Reynolds number of the maximum 
amplification rate,  and about 25? of the maximum growth in a Falkner-Skan separation boundary layer. 

9.7 Three-dimensional waves 

In the detailed study of the eigenvalues of unstable 2D first-mode waves [Mack (1969)], it was noted 
that the phase velocity is always between c^ and Cg. These two velocities are almost identical near M^ = 
1.6, which suggests why boundary layers near that Mach number are almost stable even though the 
generalized inflection point has moved out to Ug = 0.38. The inflection point is a fixed feature of the 
boundary layer profile, and so is independent of the wave orientation. The phase velocity Cg of a 3D wave 
is U cos(|;, and the phase velocity c^ is {:-UM^)cosi>, where M^ = M,cosi|'. Thus as the wave angle 'I' 
increases from zero, o decreases more than by COSIJJ, and the difference Og - c increases. Consequently, 
we can expect the first mode to become more unstable. At the same time the thickness of the supersonic 
relative flow region, where one exists, will decrease along with M^ and we shall not be surprised to find 
that the higher modes become more stable. 

Figure 9.8 shows the temporal amplification rate (^^ of the first and second modes at M^ = k.5 as a 
function of the frequency \ for several wave angles. Three-dimensional first-mode waves are indeed more 
unstable than 2D waves, and second-mode 3D waves are more stable than the corresponding 2D waves. The 
latter result also holds for all of the higher modes. The most unstable first-mode wave is at an angle of 
close to 60°, with an amplification rate about twice the maximum 2D rate and with a frequency a little 
over one-half of the frequency of the most unstable 2D wave. 

At M, = It.5, the unstable regions of the first two modes are separated by a damped region for all 
wave angles. However, at M, = 8.0, Fig. 9.9 shows that for 2D waves the first three modes are merged into 
a single unstable region, if we look at Fig. 9.2 we see that at this Mach number the exceptional mode is 
the third mode. Thus we can note another feature of the neutral wavenumbers a^^ of these modes: They 
serve as the "end points" of the merged unstable regions of the modes lying below them. As the wave angle 
increases from zero and M, decreases, the merging is still in general accord with Fig. 9.2 for M,, as is 
confirmed by the calculation of » The same pattern of upward sloping exceptional wavenumbers is found 
for oblique waves as for 2D waves [Mack (1969)]. Foril'r 60°, the second mode is stable; for'-('= 56 , 
there are still second-mode unstable waves, as can be verified by examining the phase change across the 
boundary layer of the pressure fluctuations, even though no peak is visible on the curve of Fig, 9.9. 
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In Fig. 9.10, the maximum temporal amplification rate with respect to frequency is plotted against 
for the four Maoh numbers H.5, 5.8, 8.0 and 10.0. At all of these Mach numbers the most unstable first- 
mode wave is at an angle of between 50° and 60°, and has a maximum amplification rate that is roughly 
double the most unstable 2D wave. The effect of Maoh number on the maximum first-mode amplification rate 
with respect to both frequency and wave angle is shown in Fig. 9.11. The wave angle of the most unstable 
wave is noted on the figure to within 5°, and the maximum 2D amplification rates are shown for comparison. 
An interesting change in the relationship between the 2D and 3D amplification rates takes place for M- < 
4. The 3D maximum amplification rate is no longer only double the 2D rate as at higher Maoh numbers; 
instead, at M^ = 3.0 the ratio of the 3D rate to the 2D rate is 5.8, at M^ = 2.2 it is 33, and at M, = 1.8 
it is 130. We recall from Fig. 9.1 that it is near M^ = 1.6 that the difference c - o is the smallest. 
Therefore, the sonic limit acts as a severe constraint on the amplification of 2D waves at low Mach 
numbers. When this constraint is removed, as it is for 3D waves, the amplification rates increase 
sharply. We may consider the 3D maximum amplification rate as the one that properly reflects the inherent 
instability of a given boundary-layer profile. 

9.8 Effect of wall cooling 

Perhaps the most celebrated result of the early stability theory for compressible boundary layers was 
the prediction by Lees (1947) that cooling the wall stabilizes the boundary layer. This prediction was 
made on the basis of the asymptotic theory, and a criterion was provided for the ratio of wall temperature 
to recovery temperature at which the critical Reynolds number becomes infinite. Although Lees's original 
calculations contained numerical errors, the temperature ratio for complete stabilization was later 
computed correctly by a number of authors. The most accurate calculations gave the result that complete 
stability can be achieved for 1 < M^ < 9 by sufficient cooling. These calculations can be criticized in 
three important respects: First, no indication is given as to how the amplification rate varies with wall 
temperature; second, the calculations are for 2D waves only; and third, no account is taken of the 
existence of the higher modes. In this Section we shall see that the current inviscid theory can remedy 
all of these deficiencies. 

As the boundary layer is cooled a second generalized inflection point appears for U < l-l/M,. As the 
cooling progresses, this second inflection point moves towards the first one and then both disappear for 
highly cooled walls. The complete account, as given by Mack (1969), of how these two Inflection points 
affect the instability of 2D and 3D waves is a lengthy one and also brings in unstable supersonic waves. 
The conclusion is that when the generalized inflection points disappear, so do the first mode waves, but 
the higher modes, being dependent only on a relative supersonic region, remain. Some results are shown in 
Fig. 9.12, where the ratio of the maximum temporal amplification rate to its uncooled value is plotted 
against the ratio of wall temperature T„ to recovery temperature T at M^ = 3.0, 4.5., and 5 8 for 3D 
first-mode waves, and at M^ = 5.8 for 2D second-mode waves. In each instance, the wave angle given in the 
figure IS the most unstable. The first-mode waves, even when oblique, can be completely stabilized at the 
Mach numbers shown, just as originally predicted by Lees (1947). However, the second mode is not only not 
stabilized, it is actually dgstabiJliagj, although if the amplification rate is based on the boundary-layer 
thickness, the increase in (o^ is just about compensated for by the reduction in y. and oi.y. is virtually 
unchanged by cooling. o    io J 

As a final result on the effect of cooling, we give Fig. 9.13 which shows the temporal amplification 
rate at M^ = 10 as a function of wavenumber for an insulated wall and a highly-cooled wall (T /T = 0 05) 
For the former, the first four modes are merged to form a single unstable region, and the liSiting upper 
wavenumber is the exceptional wavenumber of Fig. 9.2. For the latter, the unstable regions of the four 
modes are separate, as is true at lower Mach numbers for an insulated wall, and the maximum amplification 
rate of each mode is about double the uncooled value. 

10.  COMPRESSIBLE VISCOUS THEORY 

The early theoretical work on the viscous stability theory of compressible boundary layers was based 
on the asymptotic methods that had proven to be successful for incompressible flow. However these 
theories, which were developed by Lees and Lin (1946), Dunn and Lin (1955), and Lees and Reshotko'(1962), 
turned out to be valid only up to low supersonic Mach numbers. Some results for insulated-wall flat-plate 
boundary layers obtained with the asymptotic method are given in Fig. 10.1, and compared with direct 
numerical solutions of the eigenvalue problem. All numerical results in this Section are for the same 
family of flat-plate boundary layers used in Section 9. In Fig. 10.1 neutral-stability curves of 
frequency at M, = 1.6 and 2.2 as computed from the Dunn-Lin (1955) theory by Mack (I960) are compared with 
results obtained by numerical integration using both the sixth-order simplified equations of Dunn and Lin, 
and the sixth-order constant Prandtl number version of the complete stability equations of Appendix 1 At 
Tvl.^,^; ' r*?^ 11"^^ calculations are in good agreement for R > 700, but at M, = 2.2, the agreement between 
the Dunn-Lin theory and the numerical solution with the complete equations is poor at all Reynolds 
numbers. The asymptotic theory is supposed to solve the simplified equations with an error no larger than 
the error involved in dropping the missing viscous terms.  It is evident from the numerical solutions of IZ ru -"-"-<=" -" ^i^t-i^ius one mj.i£,iiig viscous terms, it is evident from the numerical solutions of 
the Dunn-Lm equations in Fig. 10.1, that the equations are better than the method used to solve them, but 
even so at M, = 2.2 the differences compared to the complete equations are too large to permit their use 
However, there is little reason in any case to use these equations in numerical work, because they are of 
the same order as the complete 2D equations, and for 3D waves the sixth-order approximation given in this 
Section is more accurate. 

10.1 Effect of Mach number on viscous instability 

The viscous theory must of course be used for all numerical calculations at finite Reynolds numbers 
An important theoretical question that we are able to answer with the viscous theory is the influence of 
Mach number on viscous instability. The definition of viscous instability that we use here for 
classification purposes is that the maximum amplification rate increases as the Reynolds number decreases. 
The maximum is with respect to frequency, and also wave angle for 3D waves, at constant Reynolds number 
and the amplification rate is referenced to L [Eq. (2.57)]. A neutral-stability curve with an upper- 
branch wavenumber which increases with decreasing Reynolds number, as for the Blasius boundary layer is 
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an indicator of viscous instability. We start by examining the curves of neutral stability for 2D waves 
presented in Fig. 10.2, where at five Mach numbers the wavenumber is plotted against 1/R to emphasize the 
higher Reynolds number region. The neutral curve at M^ = 1.6 is of the same general type as for a low- 
speed boundary layer with only viscous instability. The low values of the neutral wavenumbers reflect a 
drastic weakening of viscous instability compared to the Blasius boundary layer. We already know from 
Fig. 9.6 that the maximum inviscid amplification rate increases sharply for M. > 2.2. What we see in 
Fig. 10.2 is that as the Mach number increases above 1.6, viscous instability continues to weaken and the 
effect of the increasing inviscid instability extends to lower and lower Reynolds numbers. Finally, at M^ 
= 3.8 the influence of inviscid instability is dominant at all Reynolds numbers, and no trace of viscous 
instability can be seen. Viscosity acts only to damp out the inviscid instability, just as for the low- 
speed Falkner-Skan boundary layers with a strong adverse pressure gradient. As a result, the instability 
characteristics of flat-plate boundary layers above M^ = 3 are more like those of a free shear layer than 
of a low-speed zero pressure-gradient boundary layer. 

We have learned in Section 9 that 2D amplification rates above M^ = 1 are strongly influenced by the 
constraint of the sonic limit on the phase velocity, and do not represent the true instability of a 
boundary-layer profile. Therefore, to get a complete view of the influence of Mach number on viscous 
instability we must turn to 3D waves. The instability of 2D and 3D waves up to M^ = 3.0 is summarized in 
Fig. 10.3, where the maximum temporal amplification rate is given at M« = 1.3, 1.6, 2.2, and 3.0 as a 
function of Reynolds number up to R = 2000. The most unstable wave angles (to within 5°) of the 3D waves 
are shown in the figure. It is apparent that these angles differ little from the inviscid values except 
near the critical Reynolds number at M^ = 1.3. We see that viscous instability, which at M^ = 1.3 is 
totally responsible for both 2D and 3D instability at the Reynolds numbers of the figure, decreases with 
increasing M. for 3D as well as for 2D waves. However, there is little change in the maximum 3D 
amplification rate with increasing Mach number, in contrast to the large decrease in the maximum 2D 
amplification rate. At M- = 3.0, viscosity acts only to maintain the maximum amplification rate at about 
the same level down to low Reynolds numbers, rather than as the main source of instability as at lower 
Mach numbers. 

There are unfortunately no calculations available between MH = 3.0 and 4.5, but the distribution with 
Reynolds number of the maximum temporal amplification rate is given in Fig. lO.t at M^ = 4.5, 5.8, and 7.0 
for wave angles that are approximately the most unstable. All of these waves are first-mode waves. At M^ 
= 10 it is difficult to assign a maximum in the first-mode region as the single peak in the (^^ vs a curves 
for i>> 50° occurs near the transition from the first to the second mode, and 55° has been rather 
arbitrarily selected as the most unstable angle. In any case, it is clear from Fig. 10.4 that in this 
Mach number range there is no viscous instability and the influence of viscosity is only stabilizing. 

10.2 Second mode 

The lowest Mach number at which the unstable second mode region has been located at finite Reynolds 
numbers is M^ = 3.0, where the minimum critical Reynolds number R^^ is 13,900 [Mack (1984)]. As the Mach 
number increases, the inviscid second-mode maximum amplification rate increases, as shown in Fig. 9.6, and 
the unstable second-mode region moves rapidly to lower Reynolds numbers. At M^ = 3.8, R,,^ is 827; at K^ = 
4.2 it is 355; and at M. = 4.5 it is 235. Furthermore, the first and higher-mode unstable regions go 
through the same process of successive mergers as they do in the inviscid theory. The first merger, 
between the first and second-mode unstable regions, takes place at about M^ = 4.6. Examples of neutral- 
stability curves of wavenumber just before merger (M^ = 4.5), and just after merger (M^ = 4.8), are shown 
in Fig. 10.5. The shapes of the neutral-stability curves, both before and after merger, are such as to 
suggest that viscosity is only stabilizing for all higher modes, and this is confirmed for the 2D second 
mode by Fig. 10.6, where the distribution of (Wj^)^^^ with Reynolds number is shown for M^ = 4.5, 5.8, 7.0, 
and 10.0. 

The effect of wave angle on second-mode amplification rates is shown in Fig. 10.7, where (.'^i)max ^^ 
plotted against wave angle for the same Mach numbers as in Fig. 10.6. This figure is to be compared with 
the comparable inviscid results in Fig. 9.10. In both instances, increasing Mach number brings a 
reduction in the rapidity with which the maximum amplification falls off with increasing wave angle. 

10.3 Effect of wall cooling and heating 

Few results have been computed from the viscous theory for boundary layers with cooled and heated 
walls. One result, shown in Fig. 10.8, gives the effect of heating and cooling on the stability of a 
low-speed boundary layer (M. = 0,05). The x-Reynolds numbers of 2D normal modes for three constant values 
of the N factor, ln{k/A^)^ , are plotted against the wall temperature ratio T /Tj,. We see that cooling 
has a strong stabilizing effect, and that heating has a strong destabilizing effect. The frequencies that 
correspond to the N factors are also strongly affected by the wall temperature. For example, at T^^/T^, = 
0.90, the frequency for N = 9 is F = 0.157 x 10"^; at T^^/T^ = 1.15, it is F = 0.445 x 10"^. 

As an example of the effect of wall cooling at hypersonic speeds, Fig. 10.9 shows 2D neutral curves at 
M^ - 5.8 for T^j/Tj, = 1.0, 0.65, 0.25 and 0.05. The freestream temperature is 50°K except for the lowest 
wall temperature where it is 125°K. When the wall is cooled to T /T^ = 0.65, a noticeable stabilization 
takes place for the first-mode, but only "a narrowing of the unstable wavenumber band can be detected in 
the second-mode region. At the other two temperature ratios, there is no unstable first-mode region. The 
lowest temperature ratio is of interest because there is no generalized inflection point in the boundary 
layer, and thus no a to serve as the limit of the upper branch of the neutral curve. We may observe 
that the wavenumbers at the critical Reynolds numbers of the three cooled cases are in the inverse 
proportion 1.0:0.71:0.48, and the corresponding boundary-layer thicknesses are in the proportion 
1.0:0.69:0.53. Consequently, the length scale is the controlling factor in the location of the second- 
mode unstable region in terms of wavenumber. 
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lO.t Use of sixth-order system for 3D waves 

rfl o f? '^^^^^^^^^'^y °°ted m section 8.5 that only a single dissipation term couples the energy equation 
[8.9e)] to the other equations for a 3D wave in either a 2D or 3D boundary layer, and mentioned the 
economy measure proposed by Mack (1969) of using the sixth-order system that results from neglecting this 
term for 3D waves. These equations are essentially the 2D equations in the direction of k. In Table 10 1 
the temporal amplification rates computed from the sixth- and eighth-order systems are compared fo'r 
various wave angles and Reynolds numbers at five Mach numbers. In all cases the waves are close to the 
most unstable first-mode waves at the particular Mach and Reynolds numbers listed. We see that the sixth- 
order system is surprisingly good, and can be used at R = 1500 for all Mach numbers with a maximum error 
of less than 5%. The error of the sixth-order system, which depends not only on the Mach and Reynolds 
number,  but also on the wave angle,  is usually minimal up to about il* = 30° and can become large forip > num 
70 

Table 10.1. Comparison of temporal amplification rates for 3D 
waves as computed from sixth-order and eighth-order systems of 
equations at several Mach numbers. 

^1 R a ijj ojj^xlO-^       (o.xlO^     % difference 
6th order 8th order 

1.3 500 0.075 15° 0.883 0.824 7.2 
1.3 1500 0.060 45° 1.467 1.445 1.5 

1.6 500 0.070 55° 0.974 0.874 11.4 
1.6 1500 0.050 55° 1.384 1.346 2.8 

2.2 500 0.055 60° 1.198 1.066 12.4 
2.2 800 0.045 60° 1.391 1.300 7.0 
2.2 1500 0.035 60° 1.325 1.273 4.1 

t.5 500 0.045 60° 1.117 1.039 7.5 
t.5 1500 0.050 60° 1.641 1.613 1.7 

5.8 500 0.050 55° 0.790 0.736 7.3 
5.8 1500 0.060 55° 1.403 1.384 1.4 

10.0 1500 0.040 55° 0.444 0.434 2.3 

There are three other dissipation terms in the energy equation besides the coupling term, and their 
effect on the amplification rate has also been examined by Mack (1969) at R = 1500 and M. - 2 2 5 8 and 
10,0. The wavenumbers were the same as in Table 10.1. At M, = 2.2, the coupling term has the'largest 
influence on the amplification rate. However, at the two higher Mach numbers the other terms increase in 
importance. Since some terms are stabilizing and others destabilizing, the error with all dissipation 
terms zero is smaller at these two Mach numbers than with only the coupling term zero. It is not known 
how general this result is, but experience with the Dunn-Lin equations indicates that it is limited to 
waves with V  well away from zero. 

The small effect of the dissipation terms on the amplification rates of the 3D waves in the above- 
mentioned calculations is in distinct contrast to what happens when the Dunn-Lin equations are used for 
2D waves. The sixth-order system with only the coupling term zero is exact for 4) = 0, unlike the Dunn- 
Lin equations where all of the dissipation terms are neglected along with a number of other terms that are 
supposed to be of the same order. The differences between the neutral-stability curves in Fig 10 1 
computed directly from the Dunn-Lin equations and those computed from the complete equations testify to 
the importance of the neglected terms. A calculation at M. = 2.2 and R = 600 f or a = 0.045 gave the 
result that the maximum 2D amplification rate from the Dunn-Lin equations is 635E larger than when computed 
from the complete equations. A more favorable result is obtained at this Mach number for a 60° wave with 
a = 0.045 at R = 1000, where the Dunn-Lin equations give an amplification rate that is 15% too high 
This IS an improvement over the 2D results, but still not as good as the result obtained when only the 
coupling term is neglected. At M^ = 4.5 and R = 1500, the amplification rate of the most unstable 3D 
first-mode wave computed from the bunn-Lin equations is in error by 23?; the error for the most unstable 
(2D) second-mode wave is 14|. The conclusion to be drawn is that the Dunn-Lin approximation is too 
severe, and the equations are unsuitable for numerical work above about M, = 1.6. On the contrary the 
sixth-order system with only the coupling term neglected can be used for numerical computations where'high 
accuracy is not important, and they offer a substantial saving in computer time and expense 

10.5 Spatial theory 

Both the theoretical and numerical aspects of the stability of compressible boundary layers were 
worked out almost completely on the basis of the temporal theory. In contrast, almost all stability 
calculations are now routinely done with the spatial theory. Two exceptions are the SALLY [Srokowski and 
Orszag (1977)] and COSAL [Malik and Orszag (1981)] codes for 3D boundary layer stability, which calculate 
eigenvalues from the temporal theory and use the 3D Caster transformation to convert to spatial 
eigenvalues. This approach, which introduces a small error into the calculation has the advantage of 
allowing the use of powerful matrix methods. The COSAL code exploits this possibility by providing a 
global eigenvalue search which relieves the user from the necessity of making an initial eigenvalue guess 
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Some of the extensive temporal calculations of Mack (1969) have been recalculated by El-Hady and 
Nayfeh (1979) using the spatial theory. All findings were in accord with the temporal calculations. A 
recent series of spatial calculations by Wazzan, Taghavi and Keltner (1981) found important differences 
with the calculations of Mack, but there is good reason to believe that the new calculations are not 
correct   [Mack   (198tb)]. 

As an example of the same calculation performed with the temporal and spatial theories, Figs. 10.10 
and 10.11 give the respective maximum amplification rates of the most unstable first and second-mode waves 
at R = 1500 as a function of freestream Mach number. The differences between the temporal and spatial 
first-mode curves are due to the increase in the group velocity from about 0.4 at M^ = 0 to near 1.0 at 
high Mach number. However, both curves reflect the fact that at first increasing Mach number brings a 
reduction in the maximum amplification rate because of the weakening of viscous instability, then the 
increasing inviscid instability becomes dominant, and finally the increasing boundary-layer thickness 
causes a proportionate reduction in the amplification rate. Furthermore, it is important to keep in mind 
that both the spatial theory and the temporal theory plus the Caster transformation give almost identical 
values of the amplitude ratio,   and so either can be used in transition-prediction  calculations. 

11.     FORCING  THEORY 

11.1   Formulation and numerical results 

The structure of linear stability theory allows the forced response of the boundary layer on a flat 
plate to a particular type of external disturbance field to be readily obtained [Mack (1971,1975)]. One 
of the independent solutions of the stability equations in the freestream is, for a^^ = 0 and in the limit 
of large Reynolds number, the inviscid flow over an oblique wavy wall of wavelength 2Ti/a moving with the 
velocity  c.     The  time-independent  part  of  the  pressure  fluctuation given by this solution is  [Eq.   (9.11)] 

p = iYM,(a-a))exp{ia[x+(M^-l)''/2y]}     . (11.1) 

For a wave which is oblique to the freestream, a and M. are taken in the direction normal to the constant 
phase lines in the x,z plane. It is seen from Eq. (11.1) that when M^ > 1, the constant phase lines in 
the x,y plane are Mach waves. With the negative sign in Eq. (11.1), the Mach waves are outgoing, i.e., 
energy is transported in the direction of increasing y; with the positive sign, the Mach waves are 
incoming. When M. < 1, the solution with the upper sign decays exponentially upward, and the other 
solution increases exponentially upward. In stability theory, only solutions which are at least bounded 
as y-w are permitted, but no such restriction is present in the forcing theory where the incoming wave 
has been produced elsewhere in the flow. The full viscous counterpart of Eq. (11.1) for in incoming wave 
has a slow exponential increase upward, which is perfectly acceptable. 

The incoming-wave solution bears some resemblance to a Fourier component of the sound field radiated 
from turbulent boundary layers at high supersonic speeds according to Phillips' (1960) theory. In this 
theory, each acoustic Fourier component a,g is produced by the same Fourier component of the frozen 
turbulent field moving at a supersonic source velocity c relative to the freestream. Thus the turbulent 
boundary layer is decomposed into oblique wavy walls moving supersonically, and the associated outgoing 
Mach waves are the incoming Mach waves of the receiving laminar boundary layer at y = 0. However, in 
Phillips' theory, the field is random, and each "wavy wall" exists for only a finite time related to the 
lifetime of an individual turbulent eddy. In the present theory, the incoming wave field is steady to an 
observer moving with c. 

A solution for the boundary-layer response at each Reynolds number can be found for each a,B and c 
by using both inviscid solutions of the eighth-order system, Eqs. (8.11), together with the usual three 
viscous solutions which go to zero as y^™ , to satisfy the boundary conditions as y = 0. The combined 
solution, in addition to giving the boundary-layer response which results from the incoming acoustic wave, 
also provides the amplitude and phase of the outgoing, or reflected, wave relative to the incoming wave. 
The combined, or response, wave is neutral in the sense of stability theory, but its amplitude in the 
boundary layer is a function of Reynolds number. If the local mass-flow fluctuation amplitude m(y) is 
chosen to represent the amplitude (a hot-wire anemometer measures primarily m), the ratio of m , the peak 
value of ra(y), to m^, the massflow fluctuation of the incoming wave, can be called A/Ap and used in a 
manner similar to the amplitude ratio A/AQ of an instability wave. An increase in m /m^ with increasing R 
represents an "amplification"; a decrease, a "damping". 

The most important result of the forcing theory is shown in Fig. 11.1, where m /m^ from the viscous 
theory is plotted against Reynolds number for waves of six dimensionless frequencies in an insulated-wall, 
flat-plate boundary layer at M^ = 1.5. The waves are 2D, and the phase velocity has been assumed to be c 
= 0.65. We see that the amplitude of each wave starts to grow at the leading edge, reaches a peak at a 
Reynolds number that varies inversely with frequency, and then declines. The lower the frequency, the 
higher the maximum value of m /m^. This is the principal result of the forcing theory, and has been found 
to be true for all boundary layers and all waves regardless of the wave angle and the phase velocity 
(provided only that M. > 1). As a consequence of this behavior, the forcing mechanism provides boundary- 
layer waves with amplitudes from 6-14 times as large as freestream sound waves without any instability 
amplification. 

In the inviscid theory, once c and ijj have been specified the only remaining parameter is a. When the 
mass-flow fluctuation amplitude ratio is plotted against a for a 2D wave with c = 0.65 and the same 
boundary layer as in Fig. 11,1, the inviscid theory gives a result that is significantly different from 
the viscous theory. Since F = ac/R, a wave of given dimensionless frequency F travelling downstream at a 
constant o will have its dimensionless wavenumber increase linearly with R. Consequently, the a axis is 
equivalent to the R axis in Fig. 11.1. What we find from the inviscid theory is that inviscid waves 
decrease in amplitude for a> 0.0075. All of the amplitude peaks in Fig. 1 1.1 occur at an a larger than 
this except for the lowest frequency. Consequently, the initial growth of Fig. 11.1, which is just what 
is found in experiments in supersonic and hypersonic wind tunnels with turbulent boundary layers on the 
tunnel walls, is a purely viscous phenomenon.  However, when the viscous response curves from Fig. 11.1 
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are also plotted against a, they show that the decrease in amplitude which follows the region of growth In 
Fig. 11.1 Is described closely by the Invlscld theory. This result Is In contrast to stability theory, 
where the Invisold amplification and damping rates are only approached by the viscous theory in the limit 
R+". The higher the frequency, the lower the Reynolds number at which the viscous curve joins the 
invisold curve. 

11.2 Receptivity in high-speed wind tunnels 

The quantity mp/m^^. Interpreted as A/A^, is the most important result in supersonic and hypersonic 
wind tunnels. It provides an essential piece of information which has been missing up to now: the 
relation of the amplitude of a boundary-layer wave to the amplitude of the freestream wave which causes 
it. In other words, we now have a solution to one particular receptivity problem. Strictly speaking, m 
is equivalent to the A of stability theory only when the m distribution Is self-similar, but such is no§ 
always the case. However, this situation is no different from the usual comparisons of the quasi-parallel 
stability theory with experiment, as in Section 7.5, where the peak m is followed downstream and 
identified with A even though the amplitude distributions are nonslmllar. 

The major difficulty In using the forcing theory as a solution of the receptivity problem is that 
forced waves are distinct from free waves, and the process by which the former become the latter is 
unknown. An experiment by Kendall (1971) showed that, as measured by the phase velocity, a forced wave 
near the leading edge evolves into a free instability wave farther downstream. In the paper from which a 
portion of the text of this Section has been adapted [Mack (1975)], we assumed that the forcing theory 
applies up to the neutral-stability point of the particular frequency under consideration, and that 
stability theory applies downstream of that point. The conversion from one wave to the other would seem 
most likely to occur if the amplitude distribution through the boundary layer at the neutral-stability 
point matched the elgenfunctlon of the Instability wave of the same frequency and wavelength. A limited 
number of calculations at M^ = 1.5 show that the two distributions are indeed close together for the same 
F, a and R. With the only mismatch between the two waves a phase-velocity difference of 20?, conversion 
of forced into free waves can be expected to take place quickly. 

Consequently, with the approach just outlined the forcing theory can be used to calculate A„/A,, the 
ratio of the instability-wave amplitude at the neutral point to the amplitude of the sound waves radiated 
by the turbulent boundary layer on the wind-tunnel wall. The subsequent ratio of the instability-wave 
amplitude to A, is found by multiplying AQ/A, by the usual amplitude ratio A/AQ calculated from stability 
theory. Thus, with the forcing theory we can replace the previously unknown constant A„ with a known 
frequency-dependent Ag. " 

11.3 Reflection of sound waves from a laminar boundary layer 

A more straightforward use of the forcing theory is to calculate the reflection of a monochromatic 
sound wave from a boundary layer. Figure 11.2 gives the ratio of A^,, the amplitude of the reflected wave, 
to k^, the amplitude of the incoming wave, as a function of a for c = 0.65 and the same M. = 4.5 boundary 
layer used previously. Figure 11.3 gives the ratio of p(0), the pressure fluctuation at the wall, to 
gj_(0), the pressure fluctuation of the Incoming wave at the position of the wall with no boundary layer 
present. In each figure the upper curve is the invisold result, and the other curves are the viscous 
results for a series of frequencies. 

According to the Inviscid theory, when a= 0, Aj./A^ = 1.0 and p(0)/p.(0) = 2.0; when a+oo , A /A- = 
1.0 and p(0)/pj^(0) = 0. Thus fora= 0, the boundary layer effectively has zero thickness and the'^sound 
wave reflects as from a solid surface in the absence of a boundary layer. The reflected wave has the same 
amplitude and phase at y = 0 as the incoming wave so that the wall pressure fluctuation is twice p^(0). 
At the other limit, a*<», the boundary layer is Infinitely thick compared to the wavelength, antTthe 
reflection is the same as from a constant-pressure surface. The amplitude of the reflected wave is again 
equal to that of the incoming wave, but its phase at y = 0 differs by 180° from the incoming wave. Thus 
the pressure fluctuation at the wall is zero. Between these two limits, the amplitude of the reflected 
wave is always greater than the amplitude of the incoming wave. 

The viscous results are quite different. For small a, A is always less than A.. Furthermore, a 
minimum exists in A,, for each frequency. A similar minimum exists in p(0), but it is located at a larger 
a than is the A^, minimum. If the A minimum were to reach zero, that particular a would constitute an 
instability eigenvalue for the family of incoming waves. However, in stability theory, this type of wave 
has not been encountered, either as a supersonic wave with c < 1-1/M^ as in the present example, or as a 
subsonic wave with c > 1-1/M, where the amplitude Increases exponentially with increasing y. Figure 11.2 
indicates that if such an eigenvalue exists it would be at such a low Reynolds number to make the use of 
the  quasi-parallel  theory invalid. 

When the incoming Mach waves of the external travelling sound field reflect from a solid surface in 
the absence of a boundary layer, there is no phase shift at the wall. Compression waves reflect as 
compression waves, and the reflected waves originate at the points where the corresponding incoming waves 
intersect the surface. However, when a boundary layer is present, there is a phase shift at the wall. 
Consequently, a reflected Mach wave of the same phase appears to originate at a distance A away from the 
point of intersection. This offset distance, expressed as a ratio to the boundary-layer thickness, is 
given by 

A*/6 =  (c/FRyg)[ 6^(0-6^(0)]   , (11.2) 

where 9^(0) is the phase (in radians) of the pressure fluctuation of the incoming wave at the wall, and 
0 (0) is the same quantity for the reflected wave. When the phase of the reflected wave lags the phase of 
the incoming wave, the reflected wave originates at a point downstream of the intersection point of the 
incoming wave. When the phase difference is an integer multiple of TT , the incoming wave reflects as a 
wave of the opposite sign at the point of intersection. 
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In Fig. 11.5, the ratio A*/6 is given at R = 600 as a function of frequency for the same conditions 
as in Figs. 11.3 and 11.1. At only one frequency, F = 0.975 x 10"^, is the offset distance zero. Forj^all 
smaller frequencies, the phase of the reflected wave lags behind the phase of the incoming wave, and A is 
positive with a maximum of 4.56 at F = 0.08 x 10"^. Because of the long wavelength at this frequency, 
this offset is only 0.077X*, or 28° in phase. Offsets have been observed experimentally in unpublished 
measurements of Kendall. The measurements were made with a broad-band hot-wire signal, so no direct 
comparison with the single-frequency calculations is possible. 

11.1)    Table of boundary-layer thicknesses 

As a final item in Part B, we append Table 11.1 which gives the three common dimensionless boundary- 
layer thicknesses as functions of the freestream Maoh number for the family of insulated-wall, flat-plate 
boundary layers for which numerical results have been g:^ven in Sections 9, 10 and 11. These quantities 
may be used to convert the a, a and R (all based on L ) into, say, a^ , Og and R^, based on 6. The 
conversion is  achieved by multiplying a , a and R by y^. 

Table 11.1    Dimensionless boundary-layer thickness  (U = 0.999),  displacement thickness 
and momentum thickness of insulated-wall,  flat-plate boundary layers. 
(Wind-tunnel temperature conditions.) 

"i ^6 ^6* ^e 

0 6.0 1.72 0.664 
0.7 6.2 1.92 0.660 
1.0 6.4 2.13 0.656 
1.6 7.0 2.77 0.648 
2.0 7.6 3.37 0.644 
2.2 8.0 3.72 0.643 
3.0 9.8 5.48 0.642 
3.8 12.1 7.83 0.644 
4.2 13.5 9.22 0.645 
4.5 14.6 10.34 0.646 
4.8 15.8 11.55 0.646 
5.8 20.0 15.73 0.636 
6.2 21.7 17.49 0.629 
7.0 25.4 21.19 0.616 
7.5 27.8 23.62 0.607 
8.0 30.3 26.13 0.598 
8.5 32.9 28.72 0.590 
9.0 35.5 31.38 0.581 
9.5 38.2 34.10 0.573 

10.0 41.0 36.88 0.565 
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PART C.     THREE-DIMENSIONAL BOUNDARY LAYERS 

12.     ROTATING  DISK -  A  PROTOTYPE  3D BOUNDARY LAYER 

Up to this point we have been concerned in the numerical examples exclusively with two-dimensional 
boundary layers, although the formulations of Sections 2 and 8 are also valid for three-dimensional 
boundary layers. In the final three Sections we shall take advantage of this fact to present a number of 
results for 3D boundary layers. A fundamental difference between the stability of 3D and 2D boundary 
layers is that a 3D boundary layer is subject to crossflow instability. This type of instability, which 
cannot occur in a 2D boundary layer, is responsible for early transition on sweptback wings. Its 
essential features can best be introduced by studying the simple boundary layer on a rotating disk. This 
self-similar boundary layer of constant thickness was first used for this purpose by Gregory, Stuart and 
Walker (1955)  in their classic paper on three-dimensional boundary-layer instability, 

12,1 Mean boundary layer 

The exact solution of the Navier-Stokes equations for a rotating disk was given by von Karman (1921), 
and later an accurate numerical solution w^s worked out by Cochran (193t) and is given in Schlichting's 
(^79) book. We use the coordinate system r , 9, z , where r is the radius, 9 is the azimuth angle, and 
z IS in the direction of the angular velocity vector S. The radial, azimuthal and axial velocity 
components can be written 

U*(r",z") =n*r*U(c) ,  V*(r*,z*) =fi %%(£;)  , 

• •**l/2 (12.1) 
w*(z*) = (fi V )-''^u(<;) . 

The dimensionless velocity components U, V and W are functions only of the axial similarity variable 

C = z*/L*  , (12,2) 

where 

L' = (v*/fi )1/2 ^^2.3) 

is the length scale.  In terms of the length scale and the velocity scale n"r*, the Reynolds number is 

R=flrL/v =r/L  , (12.4) 

which is simply the dimensionless radial coordinate r.     The  Reynolds number based on the local  azimuthal 
velocity and radius is 

Re = n*r*2/v* =  (r*/L*)2     . (12.5) 
1 / ? 

Thus R = Re       ,  just as in the 2D boundary layers we have been studying.    The displacement thickness of 
the rotating-disk boundary layer is 1.271L , 

The dimensionless azimuthal and radial velocity profiles in the coordinate system rotating with the 
disk are shown in Fig. 12.1. The azimuthal, or circumferential, profile is of the same type as in a 2D 
boundary layer with the velocity increasing monotonically from the surface to the outer flow, and it will 
be referred to as the streamwlse profile. With the disk rotating in the direction of positive 9 
(counterclockwise), the outer flow relative to the disk is in the negative (clockwise) direction. The 
radial profile is of a type that cannot occur in a 2D boundary layer. The velocity, directed outward from 
the disk center, is zero both at the wall and in the outer flow, so that there is of necessity an 
inflection point, which is located at c= 1.812, where U = 0.133 and V = -0.760. The radial velocity, 
being normal to the streamwise flow, is by definition the crossflow velocity. The maximum radial velocity 
°^ "max - °*''^''  ^^ located at ? = 0.934,  where V = -0.t96. 

12.2 Crossflow instability 

The phenomenon of crossflow instability was discovered during early work on the flow over swept-back 
wings. Transition in flight tests was observed by Gray (1952) to occur near the leading edge at 
abnormally low Reynolds numbers compared to an unswept wing. Flow visualization revealed that the wing 
surface before transition was covered with closely-spaced parallel streaks in the direction of the local 
potential flow, as shown in Fig. IX.20 of the review article by Stuart (1963). The streaks were fixed to 
the wing, and, once formed, did not change with time. They were conjectured to be the result of 
stationary vortices in the boundary layer. This same phenomenon was demonstrated by Gregory, Stuart and 
Walker (1955) to exist on a rotating disk. The streaks were found by the china-clay technique to take on 
the form of logarithmic spirals at an angle of about 13° to 14° to the circumferential direction [see 
frontispiece of Rosenhead (1963)], with the radius of the spiral decreasing with increasing angle e. 11 
in the wing experiment, the streak pattern was fixed to the surface, and so could be photographed at the 
conclusion of the experiment with the disk at rest. i^ BU du  Lne 

Stuart [Gregory et al. (1955)] used an arder-of-magnitude argument to reduce the exact linearized 
Nayier-Stokes equations for a rotating disk to the fourth-order Orr-Sommerfeld equation for the 
determination of eigenvalues. In this case, as we have already discussed in Section 2.4.1, the 3D 
stability problem reduces to a 2D stability problem for the velocity profile in the direction of the 
ortrJT ''\°^°''' f^"°^ ^"^ velocity profile in a 3D boundary layer, unlike a 2D boundary layer, depends 
on the direction, there is a different stability problem to solve for each wave direction. The 
circumferential profile has only viscous instability, and is much too stable to have anything to do with 
the observed instability phenomena. The radial velocity profile, on the contrary, has inviscid 
^!^rf«n^      ^ "'^  °f 1^^ infl^^tion point.     As  the inflection point is located well away from  the disk 
surface, we can expect there to be a strong instability. 
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In addition to the inflectional radial profile, there is a whole family of profiles in directions 
close to the radial which also have inflection points. Stuart noted that for the velocity profile at an 
angle of £= 13.2°, where e is measured from the radius in the positive 9 direction, the inflection 
point is located where the magnitude of the velocity is zero. Consequently, according to the Rayleigh 
theorem, which was shown to still be valid for this type of profile, a stationary neutral normal mode 
(phase velocity c = 0) can exist with a wave angle equal to e. Stuart also showed by calculating 
streamlines in the plane of C and the wavenumber vector for the rotating disk with large suction that the 
stationary inviscid disturbance consists of a system of vortices close to the surface, all rotating in the 
same direction (clockwise, looking along the spiral towards the disk center) and spaced one wavelength 
apart, and a second system of vortices farther from the surface. Brown. (I960) repeated this calculation 
for the rotating disk without suction using the viscous equations, and confirmed the vortices near the 
surface, but not those farther out. The vortices near the surface were in accord with conjectures made 
earlier. Thus the streaks and the spiral angle were explained as manifestations of inflectional 
instability associated with the crossflow, and the whole phenomenon was named crossflow instability. 

This explanation, while very suggestive, left many questions unanswered. The azimuthal wavelength 
calculated by Stuart for the inviscid neutral wave, gave the result that there should be 113 vortices 
around the circumference at S = 433, whereas in the experiments only about 30 were observed. This 
discrepancy was attributed to the neglect of viscosity. Another reason for the discrepancy, not mentioned 
at the time, is that the theory dealt with neutral waves, while the waves that form in the china clay were 
unstable spatial waves, i.e., they were amplifying in the outward radial direction. Brown (I960) 
calculated a neutral-stability curve from the Orr-Sommerfeld equation for the velocity profile in the 
direction 11.5° [said to be measured from the photograph in Gregory et al. (1955)], and also determined 
the locus in a-R space of unstable stationary temporal waves with this wave angle. According to Brown's 
calculation, the number of vortices at R = 433 is 23.6, and at R = 540 is 31.5. These numbers are more in 
accord with experiment, but no explanation was given as to why these particular waves should be observed. 

12.3 Instability characteristics of normal modes 

The Orr-Sommerfeld calculations of Brown (1959,1960,1961) for various directional velocity profiles 
gave a critical Reynolds number of about 180. In none of the experiments were waves detected at anything 
approaching this low a Reynolds number. Malik, Wilkinson and Orszag (1981) derived a new system of 
equations in which all terms of order 1/r were retained. These equations are of sixth order for the 
determination of eigenvalues, rather than fourth order. With the sixth-order equations, the critical 
Reynolds number was computed to be 287 [later corrected to 275 by Malik (1983, private communication)]. 
This large difference between the fourth and sixth-order equations casts serious doubt on the use of the 
former in the rotating-disk problem. 

The stability analysis is carried out in the polar coordinates r, 9, C. The wavenumber vector k at 
an angle ii to the radial direction has components a in the radial direction and Bg in the azimuthal 
direction. The wave angle ip is measured from the radius and is positive counterclockwise as usual. In 
Fig. 12.2, the spatial amplification rate a in the radial direction, computed as an eigenvalue with (Be^i 
= 0 from the sixth-order equations of Malik et al. (1981), is plotted against the azimuthal wavenumber Bg 
= 2-n/XQ, where Ae is the azimuthal wavelength in radians. This wavenumber expresses the number of 
wavelengths around a circumference, which, in the present case, is equivalent to the number of vortices. 
It is related to the wavenumber B based on L by g = gg/R. The critical Reynolds number is seen to be 
about R = 273, in reasonable agreement with Malik's most recent value. For R greater than about 400, the 
maximum spatial amplification rate in Fig. 14.2 is larger than in any 2D Falkner-Skan boundary layer (for 
the separation profile, a = 48 x lO"^). The group-velocity angle <}>j, of the most unstable normal mode 
at R = 500 is -83° (measured from the radial direction), so that the amplification rate in that direction, 
o = acoscj) , is only 8.9 x 10"^. The large values in the radial direction can be regarded as a 
cfnsequenoeof the long spiral path length rather than a reflection of the inherent instability of the 

velocity profile. 

The wave angle i> is given in Fig. 12.3 at several Reynolds numbers as a function of Bg . The 
interest in this figure is the prominent maximum in '■It that increases with R. To understand this behavior 
it is necessary to mention that the normal-mode solution represented in Figs. 12.2 and 12.3 is not unique. 
There is a second solution with larger wave angles that is completely damped for R - 500. At R =_500, the 
minimum wave angle of this solution is 18.3° at Bg = 23.5, and the minimum damping is 1.8 x 10"^ at Bg = 
22.2. At a Reynolds number somewhere above 500, the two solutions exchange identities for certain Be, 
with consequences that have not yet been worked out. 

The logarithm of the amplitude ratio A/AQ obtained by integrating a along the radius is given in 
Fig. 12.4 at R = 350, 400, 450 and 500. The reference amplitude AQ is at R = 250, rather than at the 
lower-branch neutral point of each Fourier component. The wave angle at the maximum amplitude of each R 
is noted in the figure. These numerical results differ from those of Malik et al. (1981) because here the 
irrotationality condition, Eq. (2.55c), has been applied to the wavenumber vector of each Fourier 
component. For the disk, this condition is that the azimuthal wavenumber Bg, or number of vortices, is 
constant. That is, in Fig. 12.2 the path of integration is parallel to the ordinate. In Fig. 12.4, 
ln(A/An) is given as a function of both Bg and (3j,)o, the value of B at the reference Reynolds number of 
250. We observe that although the bandwidth of Bg for which A is greater than AQ increases with 
increasing R, the bandwidth for which A/AQ is within 1/e of the maximum amplitude ratio decreases 
slightly. The values of ln(A/AQ) in this figure contrast with much higher values obtained by Cebeci and 
Stewartson (1980b) from the fourth-order system and the parallel-flow saddle-point criterion. Transition 
is usually observed to start at a Reynolds number in the vicinity of 500, so that the N factors of Fig. 
12.4 are of the magnitude customarily associated with transition in 2D boundary layers. Thus we see that 
crossflow instability in the rotating-disk boundary layer is powerful enough to lead to transition at 
lower-than-normal Reynolds numbers where the streamwise profile is completely stable. 
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12.1( Wave pattern from a steady point source 

The wave angles and number of vortices at the peak amplitudes of Fig. 12.i| are close enough to what 
is observed in the experiments to suggest that the normal modes which yield those values are the dominant 
modes of the stationary wave system that appears in the flow-visualization photographs. However, we are 
still left without any explanation of how only the most-amplified mode could be present at each radius. 
The filtering action of the boundary layer is not strong enough to accomplish this, and the constraints of 
constant F and ^ do not allow any initial Fourier component to be the most-amplified normal mode at more 
than one radius. Besides, the experiment of Gregory et al. (1955) showed clearly that a band of 
circumferential wavelengths is present at each radius, not just the most amplified. 

A definite step forward was accomplished by the experiment of Wilkinson and Malik (1983). These 
investigators used a hot-wire anemometer instead of flow visualization, and so could more accurately 
resolve the disturbance structure on the disk. Although it had been conjectured by Gregory et al. (1955) 
that minute roughnesses might play a role in fixing the vortex pattern with respect to the disk, the 
Wilkinson-Malik experiment revealed for the first time that the wave pattern responsible for the 
stationary vortex lines emanates from point sources randomly located on the disk. All of the observed 
properties of the waves can thus be explained as characteristic features of the interference wave pattern 
that results from the superposition of the entire azimuthal wavenumber spectrum of equal-phase zero- 
frequency normal modes produced by the point-source roughness element. The streaks of the flow- 
visualization photographs are the constant-phase lines of the wave pattern. The wave patterns from a 
number of sources eventually merge and cover the entire circumference of the disk. It is this merged wave 
pattern that appears in the flow visualization experiments. The much greater sensitivity of the hot wire 
compared to flow visualization techniques made it possible to detect the waves at small radii where the 
merger was not yet complete. 

Wilkinson and Malik (1983) made the phhenomenon even clearer by placing an artificial roughness on 
the disk. The waves from this roughness were of larger amplitude than the waves from the naturally 
occurring minute roughnesses, and so offered an opportunity to study the essential phenomenon in a purer 
form. Figure 12.5, taken from Fig. 18 of their paper, shows the steady wave pattern from the single 
roughness, as well as others from unavoidable natural roughnesses. In this figure, which was obtained by 
forming an ensemble average of the amplitude measurements at every disk revolution, the amplitudes have 
been normalized to a constant value of the maximum amplitude at each radius. 

The wave pattern of Fig. 12.5 is of the same type that we studied in Section 7 for a harmonic point 
source in a Blasius boundary layer, with due allowance made for the very different instability 
characteristics of 2D boundary layers and 3D boundary layers with crossflow instability. We therefore 
modified our calculation procedure for planar boundary layers to fit the different geometry of the 
rotating disk and the lack of an axis of symmetry, and have calculated the wave pattern produced by a 
zero-frequency point source located at the Reynolds number of the roughness element in the Wilkinson-Malik 
experiment [Mack (1984c)]. The wave forms, normalized to a constant value of the maximum amplitude as in 
Fig. 12.5, are shown in Fig. 12.6 along with the constant phase lines. The numbering of the constant- 
phase lines corresponds to the system used by Wilkinson and Malik. It is evident that the calculated wave 
pattern is in the closest possible agreement with the measured wave pattern as to the location of the 
constant-phase lines, the number of oscillations at each radius, and the azimuthal wavelength. The latter 
quantity varies with both radius and azimuth angle. The shift of the wave pattern to the right in Figs. 
12.5 and 12.6 with respect to the constant-phase lines is because amplitude propagates essentially along 
group-velocity trajectories. The agreement between Figs. 12.5 and 12.6 conclusively demonstrates that the 
observed stationary waves on a rotating disk are the result of the superposition of the entire spectrum of 
normal modes, both amplified and damped. 

The calculated amplitudes along the constant-phase lines are given in Fig. 12.7. Vortex No. 11 is 
the one that comes from the point source, and it is the only one with an amplitude minimum, which, it 
should be noted, is well beyond the critical Reynolds number of 273. The reference amplitude of this 
vortex was selected to fit the minimum amplitude of the experiment, and then used for all of the other 
vortices. A comparison is given in Fig. 12,8 of the calculated and experimental envelope amplitude 
distributions at R = 400 and 466. In this figure, the experimental amplitudes have been normalized to the 
arbitrary theoretical maximum amplitude at R = 400. At R = 400, the agreement is excellent except at the 
right-hand edge of the wave pattern, where a second wave pattern was present in the experiment. At R = 
466, the Influence of the second wave pattern has spread almost to the center of the principal wave 
pattern, and is the reason for the disagreement between theory and experiment in Fig. 12.8 to the risht of 
the maximum amplitude. 

13. FALKNER-SKAN-COOKE BOUNDARY LAYERS 

13.1 Mean boundary layer 

In order to more fully study the influence of three dimensionality in the mean flow on boundary-layer 
stability than is possible with the rotating disk, it is necessary to have a family of boundary-layers 
where the magnitude of the crossflow can be varied in a systematic manner. The two-parameter yawed-wedge 
flows introduced by Cooke (1950) are suitable for this purpose. One parameter is the usual Falkner-Skan 
dimensionless pressure-gradient parameter fi^; the other is the ratio of the spanwlse and ohordwise 
velocities. A combination of the two parameters makes it possible to simulate simple planar three- 
dimensional boundary layers. 

The invlscid velocity in the plane of the wedge and normal to the leading edge in the direction x is 
c 

^1 = ^ ^^c^" ' (13.1) U' = C'(x')'" , 

th^oL?/7^'^^^^"^^^ ^^J^^^l^ ^"^ ^ = 2m/(m-.1) as in Eq. (2.62). We shall refer to this velocity as 
the ohordwise velocity. The velocity parallel to the leading edge, or spanwise velocity, is 
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w'j^ = const. (13.2) 

The subscript 1 refers to the local freestream.  For this invisoid flow, the boundary-layer equations in 
the X direction, as shown by Cooke (1950), reduce to 

f"'+ ff + ejj[(m+1)/2-f'2] = 0 . (13.3) 

This equation is the usual Falkner-Skan equation for a two-dimensional boundary layer, and is 
independent of the spanwise flow. The dependent variable f(y) is related to the dimensionless ohordwise 
velocity by 

"c = "'/"cl =  i:2/(m+l)]f'(y)     , (13.4) 

and the independent variable is the similarity variable 

y =    y*(U*i/v»x*)1/2  . (13.5) 

Once f(y) is known, the flow in the spanwise direction z^ is obtained from 

where 

g" + fg' = 0 , (13.6) 

= w'/W*^ = g(y) . (13.7) 

Both f'(y) and g(y) are zero at y = 0 and approach unity as y-*-<» .  Tabulated values of g(y) for a few 
values of gjj may be found in Rosenhead (1963, p. 470). 

The final step is to use f'(y) and g(y) to construct the streamwise and crossflow velocity 
components needed for the stability equations. A flow geometry appropriate to a swept back wing is shown 
in Fig. 13.1. There is no undisturbed freestream for a Falkner-Skan flow, but such a direction is assumed 
and a yaw, or sweep, angle I!J is defined with respect to it. The local freestream, or potential flow, is 
at an angle ii with respect to the undisturbed freestream. It is the potential flow that defines the x,z 
coordinates of the stability equations. The angle of the potential flow with respect to the chord is 

and 9 is related to ii^^  and ^^  by 

= tan-1(w"i/u'i)   , (13.8) 

=    *sw+*P ■ (13.9) 

,.• . /„•? ^ „•2^1/2 With the local potential velocity, Ui = (U^f + Wgi) ' , as the reference velocity, the dimensionless 
streamwise and crossflow velocity components are 

U(y)  =  f'(y)   cos^e    + g(y)   sin^e  , (13.10a) 

W(y)  =  [-f'(y)  + g(y)]  cosBsin 9. (13.10b) 

These velocity profiles are defined by 3;^, which fixes f'(y) and g(y), and the angle 9. We note from Eq. 
(13.10b) that for a given pressure gradient all crossflow profiles have the same shape; only the magnitude 
of the crossflow velocity changes with the flow direction. In contrast, according to Eq. (13.10a) 
streamwise profiles change shape as 0 varies. For 9= 0, U(y) = f'(y); for 8 = 90°, U(y) = g(y); for 9 = 
1(5°,   the two functions make an equal contribution. 

When the Eq. (13.10) velocity profiles are used directly in the stability equations, the velocity 
and length scales of the equations must be the same as in Eq. (13.10). This identifies the velocity scale 
as U,,   the length scale as 

and the Reynolds number U L /v 

L* =  (vV/U»^)1/2   , (13.11) 

RQ/COS9    , (13.12) 

where R = {V*ix*/v*)'^^^ is the square root of the Reynolds number along the chord. For positive pressure 
gradients (m > 0), 9= 90° at x^ = 0 and 9 + 0° as x^, + »; for adverse pressure gradients (m < 0), e = 0° 
at X =0 and 9 ^ 90° as x^-*". The Reynolds number R^ is zero at x = 0 for all pressure gradients, as is 
R wilh one important exception. The exception is where m = 1 (gjj = 1). For a 2D planar flow, Pj^ = 1 is 
the stagnation-point solution; here it is the attachment-line solution. In the vicinity of x^, = 0, the 
chordwise velocity is 

"cl = -c  ^<l/<h-.0    ■ (13.13) 

The potential velocity along the attachment line is Wg-^,  and the Reynolds number is 

Rx=o = Wsi/C^*Cdu*i/<^^c)x=o^ . (13.11) 

a non-zero value. 

For our purposes  in this Section,   we may regard 9 as a free parameter,   and use the velocity profiles 
of  Eq,   (13.10)   at   any  Reynolds   number.     However,    for   the   flow   over   a   given   wedge,   9   can   be   set 
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arbitrarily at only one Reynolds number. If 6^^^ is 8 at R^, = (Ro)^ef., the 9 at any other R^ is given 
by 

tanG = tanG^^f. [ (R J^^f./Rj'^(»+1) o''ref'"o-' (13.15) 

For m << 1, the dependence on R^ is so weak that 6 is constant almost everywhere. One way of choosing 
^''o^ref within the present context is to make it the chord Reynolds number where i^i = 0; i.e., the local 
potential flow is in the direction of the undisturbed freestream. Then 6^.^^ is equal to the yaw angle 

15° and four values of The inflection Figure 13.2 shows the orossflow velocity profiles for..- -,j <:.»,u iuuj- vaj-uco oi p^. 
point and point of maximum orossflow velocity (V^^^) are also noted on the figure. In Fig. I3.3, W for 
e= t5 is given as a function of 6^ from near separation to ?,^^ = 1.0. The orossflow velocity For any 
other flow angle is obtained by multiplying the W^^ of the figure by cosSsine. The maximum orossflow 
velocity of 0.133 is generated by the separation profile rather than by the stagnation profile, where W 
= 0.120. However, W ^^ varies rapidly with &^^ in the neighborhood of separation, as do all othi? 
boundary-layer paramerers, and for gj^ = -0.190, W^^^ is only 0.102. 

The function g(y) is only weakly dependent on gjj, and, unlike f'(y), never has an Inflection point 
even for an adverse pressure gradient. Indeed it remains close to the Blasius profile in shape, as 
underlined by a shape factor H (ratio of displacement to momentum thickness) that only changes from 2.703 
to 2.539 as gjj goes from -0.1988377 (separation) to 1.0 (stagnation). The weak dependence of g(y) on 0^, 
has been made the basis of an approximate method for calculating boundary layers on yawed cylinders. For 
our purposes, it allows some of the results of the stability calculations to be anticipated. For waves 
with the wavenumber vector aligned with the local potential flow, we can expect the amplification rate to 
vary smoothly from its value for a two-dimensional Falkner-Skan flow to a value not too far from Blasius 
as 9 goes from zero to 90°. 

The^^ stability results will be presented in terms of the Reynolds number R and the similarity length 
scale L . In order that the results may be converted to the length scales of the boundary-layer 
thigkness, displacement thickness or momentum thickness, Table 13.1 lists the dimensionless quantities y^= 
6/L , y^A = 6 /L and and the shape factor H of the streamwise profile for several combinations of 6^, and 
6. Also listed are W„,^, the average orossflow velocity W = (/Wdy)/y ; y. „, the y of the inflection point 
Of the orossflow velocity profile; and e.   f,  the deflection angle of the streamline at y = y. , 
quantity y^ is defined as the point where U - " °oo inf 0.999. 

TABLE 13.1    Properties of three-dimensional Falkner-Skan-Cooke boundary layers. 

.^ 
e 

^6 yg* H W 
max 

W e 
inf ^inf 

SEP 2.2 8,238 3.195 1.021 0.0102 O.OOI76 0.187 1.306 
5.0 8.236 3.189 1.010 0.0231 0.01077 1.100 

10.0 8.229 3.166 3.959 0.0155 0.02123 2.156 
10.0 8.095 3.075 3.280 0.1310 0.06211 5.709 
50.0 8.017 2.897 3.061 0.1310 O.O627I 5.516 

-0.10 ts.o 6.522 1.985 2.698 0.0319 0.01619 1.198 3.213 -0.02 15.0 6.098 1.763 2.609 0.0058 0.00267 0.219 2.910 0.02 15.0 5.931 1.682 2.578 -0.0051 -0.00218 -0.232 2.835 o.ot 15.0 5.851 1.616 2.561 -0.0101 -0.00180 -0.119 2,787 0.10 15.0 5.616 1.551 2.529 -0.0239 -0.01091 -1.029 2.659 

0.20 15.0 5.318 1.121 2.182 -0.0123 -0.01921 -1.823 2.178 1.0 2.1 3.113 0.6196 2.227 -0.0100 -0.00503 -0.106 1.521 
10.0 3.196 0.6603 2.226 -0.0110 -0.02021 -1.669 
10.0 3.571 0.8050 2.275 -0.1181 -0.05201 -5.129 
15.0 3.621 0.8378 2.301 -0.1191 -0.05217 -5.291 50.0 3.661 O.87O6 2.332 -0.1181 -0.05081 -5.295 55.0 3.695 0.9021 2.366 -0.1127 -0.01801 -5.135 
80.0 3.791 1.0153 2.521 -0.0110 -0.01701 -1.987 
87.6 3.799 1.0260 2.512 -0.0100 -0.00116 -0,189 

13.2    Boundary layers with small orossflow 

In a two-dimensional boundary layer, the most unstable wave is two dimensional. Therefore, we can 
expect that in three-dimensional boundary layers with small orossflow the most unstable wave will have its 
wavenumber vector nearly aligned with the local potential flow, and we can restrict ourselves to waves 
".^^*" .V, r ^''1P"''P°^« °f determining the maximum amplification rate. This procedure is equivalent to 
studying the two-dimensional instability of the streamwise profile provided that T!J= 0 (amplification rate 
in streamwise direction). In the calculations of this Section,^ was taken to be either zero or° .In 

we%hfirign:r:'th"l differrc'e."'"""^^'  '° ""   '"'°' "' ^^'^"^ ^^ '""^ amplification rate with f = 0^,   and 

The effect of the flow angle 9 on the maximum spatial amplification rate of the waves with <J;= 0° is 
f r^Mn".n^f; ^I'l ^r ^ : ?-°^ ^"^ ^"° «^y"°"^ ""-""ers. The amplification rate a„^, is expressed as 
a ratio to the Blasius value {o ) it will be recalled that with  R   = 0,   g(y) =f(y"^f and the velocity 
profile remains the Blasius functio^for all flow angles.     The effect ol a n;n-zero flow a^e with 3°" 0 
IS destabilizing for a favorable pressure gradient,  and stabilizing for an adverse pressure gradient 
Consequently,   it  reduces  the  pressure-gradient  effect  of 2D Falkner-Skan boundary  layers.     The reason  for 
this result IS easy to understand by reference to Eq.  (13.IO).    We have already pointed out in Section 
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13.1 that the spanwise velocity profile g(y) is always close to the Blasius function. Thus as the flow 
angle increases from zero, the amplification rate must change from the two-dimensional Falkner-Skan value 
at 9= 0° to a value not far from Blasius at 6= 90°. 

As discussed previously, the only physically meaningful flow with 6= 90° and a non-zero Reynolds 
number is the attachment-line flow (Bj, = 1.0). For all other values of gj^, R at this flow angle must be 
either zero (Bj^ > 0) or infinite (B[^ < 0). With S,^ = 1.0 and R = 1000 (Rg= tOt.2, where Rg is the 
momentum-thickness Reynolds number), c^ v/Ca,^) ^^ = 0.Y65. The minimum critical Reynolds number of this 
profile is (RQ)QJ, = 268 (the parallel-flow Blasius value is 201), yet turbulent bursts have been observed 
as low as Rg = 250 for small  disturbances  by Poll  (1977). 

We must still show that the waves with ijj= 0° properly represent the maximum instability of three- 
dimensional profiles with small crossflow. For this purpose a calculation was made of a as a function of 
ii for 3jj = -0.02, 6 = 1)5°, R = 1000 and F = 0.1256 x 10"^, the most unstable frequency for 4; = 0° at 
this Reynolds number. It was found that the crossflow indeed introduces an asymmetry into the 
distribution of o with i>, and the maximum of o is located at ifJ = -6.2° rather than at 0°. However, 
this maximum value differs from the '^^^^^^ of Fig.   13.4 by only 0,1%. 

13.3    Boundary layers with crossflow instability only 

The main advantage that the Falkner-Skan-Cooke boundary layers offer over the rotating-disk boundary 
layer for studying crossflow instability is that the maximum crossflow velocity is not constant, but is a 
function of ?>^ and 9. The crossflow velocity is a maximum at 9 = 1(5° for a given S, , and we can expect 
the crossflow instability to also be a maximum near this angle. Figure 13.5 shows the minimum critical 
Reynolds number R^^, at 6 = 45° for the zero-frequency crossflow disturbances as a function of Bu. For 
comparison, R^^ for Tollmien-Schlichting waves in 2D Falkner-Skan crossflow boundary layers, as computed 
by Wazzan et al. (1968), is also given. For adverse pressure gradients, the steady crossflow disturbances 
become unstable at Reynolds numbers well above the R of the 2D profiles. On the contrary, for Bj, > 0.07 
the reverse is true, and for most pressure gradients in this range the steady disturbances become unstable 
at much lower Reynolds numbers than the 2D R^.^, (for B[j = 1.0, the 2D R^j, is 19,280 compared to R^^^, = 212 
for  zero-frequency crossflow  instability). 

The distribution of R^^, with  9 is shown in Fig.   13.6  for Bj, =  1.0 over the complete range of   9,   and 
for the separation profiles (B^ = -0.1988377) over the^range    0° < 9  < 50°.    Near  9 = 0° and 90°, R^^. is I CiQ    (P..     -   _n    1Qftft^77^    r^irart   i-h a   >.snn-i:>       n"   *'    ft     /"    C fl O i^^cLT     U    -    U        dUU    ^U 

This minimum occurs 
-    -  -xiii-  ±m ■        ■'S-l). which, unlike \.^^^, 

not symmetrical about 9 = 45 .  Table 13.2 lists the critical wave parameters for a few combinations of 

very sensitive to 9; near, but not precisely at, 9= 45° R^j, has a minimum. This minimum occurs close to 
the maximum of the streamline deflection angle at y = y._f.,  e,-„f. (see Table 13.1), which, unlike W„,^, is 

and 9.  The extensive computations needed to fix these parameters precisely were not carried out In most 
cases, and so the values in the Table are not exact.  It can be noted that the relation 

1^= (eh/|0hlH9O-|e|i„f) (13.16) 

gives ii^j.  to within a degree for the separation profiles, and to within 0.1° for the other profiles of 
Tables I3.I and 13.2.  This result holds in general for the most unstable wave angle. 

TABLE 13.2  Wave parameters at minimum critical Reynolds number of 
zero-frequency disturbances. 

eh e V kcr *cr 

SEP 2.2 535 0.213 -89.41 
5.0 237 0.213 -88.68 

10.0 121 0.215 -87.44 
40.0 46.5 0.230 -83.54 
45.0 46.7 0.230 -83.57 
50.0 48.4 0.231 -83.81 

-0.10 45.0 276 0.295 -88.42 
-0.02 45.0 1885 0.310 -89.7t 
0.02 45.0 2133 0.322 89.76 
0.04 45.0 1129 0.327 89.53 
0.10 45.0 527 0.339 88.93 
0.20 45.0 328 0,358 88.12 
1.00 2.4 2755 0.553 89.60 

10.0 671 0.547 88,33 
40.0 219 0.545 84.88 
45.0 212 0.540 84.70 
50.0 212 0.540 84.70 
55.0 218 0.538 84.85 
80,0 563 0.532 88.00 
87.6 2325 0.532 89.51 

As an example of a boundary layer which is unstable at low Reynolds number only as a result of 
crossflow Instability, we select Sjj = 1,0 and 9= 45°, and present results for the complete range of 
unstable frequencies. Although this pressure gradient can only occur at an attachment line. Fig, 13,5 
leads us to expect that all profiles with a strong favorable pressure gradient will have similar results. 
For this type of profile, the minimum critical Reynolds number of the least stable frequency is very close 
to the R|,j, of Fig, 13,5, We therefore choose R = 400, which is well above R^j, and where the instability 
is fully developed, and present a summary of the instability characteristics in Fig. 13,7, 
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Figure 13.7a gives a^ as a function of the dimensionless frequency F, and also shows the portion of 
the i^F plane for which fliere is instability. The unstable region is enclosed between the curves marked 
i>^J and ii^. These curves represent either neutral stability points or extrema of ii. The corresponding 
wavenumber magnitudes are shown in Fig. 13.7b. The negative frequencies signify that with ij) taken to be 
continuous through F = 0, the phase velocity changes sign. If we choose if so that the wavenumber and 
phase velocity are both positive, then it is ii that changes sign at F = 0. Consequently, there are two 
groups of positive unstable frequencies with quite different wave angles. The first group, which includes 
the peak amplification rate, is oriented anywhere from 5° to 31° (clockwise) from the direction opposite 
to the crossflow direction.  The second group is oriented close to the crossflow direction itself. 

13.t Boundary layers with both crossflow and strearawlse instability 

As an example of a boundary layer which has both crossflow and streamwise instability at low Reynolds 
numbers, we select 3jj = -0.10 and 0 = 15°. In contrast to the previous ease, the steady disturbances do 
not become unstable until a Reynolds number, R = 276, where the peak amplification rate is already 7.35 x 
10"^. [For gj^ = -0.10 and e = 0°, a^^ = 11.0 x 10"3 at F = 2.2 x 10"^ according to Wazzan et al. 
(1968)]. The distribution of o with % is shown in Fig. 13.8 for F = 2.2 x 10"^, a frequency close to 
the most unstable frequency of F = 2.1 x 10"^. We see that with a maximum crossflow velocity of O.O3I19 
(cf. Table 13.1), the distribution of a about i> = 0° is markedly asymmetric, and the maximum 
amplification rate of 7.31 x 10~3 is located at i)= -29.4° rather than near zero. This asymmetry was 
barely perceptible for the small crossflow boundary layers of Fig. 13.4, where the crossflow is only one- 
sixth as large. The a at i)= 0° of Fig. 13.8 (5.82 x 10"3) is close to a with respect to frequency of 
the ip = 0° waves (5.91 x 10"^). Since this value is 20?; below the peak amplification rate, the i|; = 0° 
waves are no longer adequate to represent the maximum instability as with small crossflow boundary layers. 
Fig. 13.8 also gives the distribution with <|J of k and the real group-velocity angle, <i> , The latter 
quantity remains within ± 7.5° of the.potential-flow direction throughout the unstable region. 

Because R = 276 is the minimum critical Reynolds number of the steady disturbances, the unstable 
region terminates in a neutral stability point at F = 0. We are particularly interested here in Reynolds 
numbers where F = 0 is also unstable, and as an example. Fig. 13.9 gives results for all unstable 
frequencies at R = 555. Figure 13.9a shows a as a function of F (here, as in Fig. 13.7, 0^^^^ is the 
maximum with respect to k), as well as the unstable region of the k-F plane; the unstable region of the'i'- 
F plane appears in Fig. 13.9b. These two unstable regions are quite different from those of Fig. 13.7 
where there Is only crossflow instability. The negative frequencies do resemble those of Fig. 13.7 in 
that the unstable range of ii is small, the unstable range of k is large, and with ii redefined so that F 
> 0, the orientations are close to the crossflow direction. However, for the higher frequencies, which 
are by far the most unstable, the unstable regions of Fig. 13.9 bear more of a resemblance to those of a 
2D boundary layer than to Fig. 13.7. The main differences from the 2D case are the asymmetry about ij^ = 0° 
aj.ready noted in Fig. 13.8, the one-sidedness of ^j^^^, and, for F < 0.4 x 10"'', the replacement of a lower 
cutoff frequency for Instability by a rapid shift with decreasing frequency to waves oriented opposite to 
the crossflow direction and which are unstable down to zero frequency. The Instability shown in Fig. I3.9 
represents primarily an evolution of the small crossflow boundary layers of Fig. I3.4 to larger crossflow. 
Only the lower frequencies, say F < 0.2 x 10"^, have to do with the pure crossflow instability of Fig. 
13.7. For frequencies near 0.4 x 10"^, i|j varies little with k in one part of the unstable region, as 
with crossflow instability; in the other part, as with streamwise instability, the opposite is true. This 
behavior becomes more pronounced at high Reynolds numbers. 

14.  TRANSONIC INFINITE-SPAN SWEPT WING BOUNDARY LAYER 

The 3D boundary layers that have received the most attention in aeronautical practice are those on 
transonic swept wings. The desirability of maintaining laminar flow on the wings of large transonic 
aircraft has led to the study of the instability of such boundary layer as a means of estimating the 
occurrence of transition and the effectiveness of various methods of laminar-flow control. The basic 
phenomenon of crossflow instability was encountered and its origin explained by the early investigators, 
as we have learned in Section 12, and means of coping with its adverse consequences were developed. 
However, interest in laminar-flow control was waning by the time computer-aided stability analysis became 
commonplace in the 1960's, and nothing more was done on the subject of 3D boundary-layer stability 
following Brown's work (1959,1960,1961) until the energy crisis of the mid-1970's. In response to the 
sudden need for an analysis tool, Srokowski and Orszag (1977) brought out the SALLY code. In spite of 
using the incompressible stability theory and a non-physical method of computing wave amplitude, this code 
has been widely used. It has since been superseded by COSAL, a compressible version of SALLY [Malik 
(1982)]. Work that was directed at developing more fundamental methods of stability analysis for swept- 
wing boundary layers was carried out by Cebeoi and Stewartson (1980a,1980b), Lekoudis (1979,1980), Mack 
(1979a,1981), and Nayfeh (1980a,1980b). 

Attention has so far been restricted to infinite-span swept wings. Even with this simplification, 
the nonsimilarity of the boundary layers has made it necessary to proceed on the basis of specific 
examples, and to try and glean a general understanding of the instability of this type of boundary layer 
on the basis of extensive numerical calculations. We shall follow this same practice in this Section. 
Detailed numerical results for a single example that were obtained by an application of methods already 
presented in this document [Mack (1979a)] are given in the hope that a careful study will yield some 
understanding of the instabilities that arise and the procedures to follow in analyzing them. 

14.1  Mean boundary layer 

The flow example used in this Section is the boundary layer on a 35° swept wing of infinite span with 
a supercritical airfoil section, distributed suction and a chord of o = 2.0 m (6.55 ft) normal to the 
leading edge. The undisturbed flow conditions are M„ = 0.89117, TJ = 311°K, and pj = 0.30663 atm. The 
upper-surface pressure ooefficient^jC is listed in Table 14.1 together with other properties of the 
potential flow as functions of s /c , where s is the arc length along the airfoil section. The 
cg0|-djy:iate system is shown in Fig. 14.1. The Reynolds number used in the stability calculations is R = 
Uj^L /v^,  where U^ is the potential velocity. The length scale L = (v*s'/U* , )1/2 reduces to the usual 
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boundary-layer length scale when the flow is two dimensional,  and is non-zero at the attachment line, 
Reynolds number Re    is U-j^s  /Vj^.    The velocity derivative which defines m and thus the Hartree 6 
evaluated  by  the  numerical differentiation of U ,   as  calculated from  the pressure coefficient, 
large - f^ near the trailing edge have been omitted from the Table. 

, The 

h "^^ 
The very 

Table 14.1 Properties of potential flow 

N s /o "l S ^h 'Pp(deg) lO-^Reg R 10 L*(cm) 

1 0 0.4859 0.7652 1.0000 55.00 0 221 0.0560 
2 0.0011 0.4934 0.7527 0.9770 45.23 0.009 224 0.0560 
3 0.0033 0.5424 0.6680 0.9306 29.26 0.028 225 0.0593 
t 0.0059 0.6261 0.5151 0.8753 16.96 0.056 301 0.0632 
5 0,0087 0.7186 0.3375 0.7798 8.95 0.091 355 0.0682 
6 0.0120 0.8033 0.1715 0.6721 3.91 0.132 412 0.0747 
7 0.01.57 0.8806 0.2051 0.6000 0.42 0.180 470 0.0818 
8 0.0199 0.9487 -0.1104 0.5300 -2.06 0.235 529 0.0896 
9 0.0246 1.0084 -0.2225 0.4759 -3.90 0.296 588 0.0978 

10 0.0299 1.0623 -0.3206 0.4351 -5.34 0.363 647 0.1064 
11 0.0358 1.1095 -0.4041 0.3900 -6.46 0.437 705 0.1153 
12 0.0492 1.1863 -0.5338 0.2975 -8.06 0.604 823 0.1339 
13 0.0651 1.2306 -0.6050 0.1583 -8.87 0.800 944 0.1535 
^H 0.0938 1.2462 -0.6295 -0.0137 -9.14 1.152 1131 0.1841 
15 0.1281 1.2402 -0.6201 -0.0594 -9.03 1.573 1323 0.2152 
16 0.1675 1.2316 -0.6066 -0.0558 -8.87 2.056 1513 0.2462 

17 0.2113 1.2238 -0.5943 -0.0518 -8.75 2.595 1701 0.2767 
18 0.2591 1.2180 -0.5850 -0.0449 -8.64 3.182 1884 0.3065 
19 0.3101 1.2126 -0.5765 -0.0515 -8.55 3.809 2063 0.3354 
20 0.3636 1.2071 -0.5676 -0.0721 -8.45 4.467 2235 0.3634 
21 0.4190 1.1990 -0.5544 -0.1315 -8.30 5.146 2400 0.3903 
22 0.4754 1.1864 -0.5339 -0.2205 -8.06 5.838 2559 0.4162 

23 0.5132 1.1762 -0.5172 -0.2203 -7.86 6.300 2661 0.4329 
24 0.5508 1.1704 -0.5076 -0.1231 -7.75 6.761 2758 0.4488 
25 0.5882 1.1663 -0.5008 -0.1882 -7.67 7.218 2850 0.4640 
26 0.6250 1.1558 -0.4831 -0.4625 -7.45 7.666 2940 0.4788 
27 0.6610 1.1419 -0.4596 -0.6677 -7.17 8.101 3027 0.4933 
28 0.6962 1.1257 -0.4320 -0.9785 -6.82 8.521 3109 0.5074 

29 0.7302 1.1058 -0.3976 -1.6025 -6.38 8.919 3188 0.5213 
30 0.7631 . 1.0826 -0.3568 -2.842 -5.84 9.293 3262 0.5351 
31 0.7946 1.0553 -0.3080 - -5.16 9.634 3333 0.5490 
32 0.8246 1.0225 -0.2483 - -4.29 9.933 3399 0.5636 
33 0.8532 0.9820 -0.1732 - -3.12 10.172 3461 0.5799 
34 0.8803 0.9366 -0.0874 - -1.65 10.345 3519 0.5982 
35 0.9059 0.8960 -0.0094 - -0.18 10.479 3573 0.6169 

Table 14.2 lists some properties of the boundary-layer solution calculated for the potential flow of 
Table 14.1 and the suction distribution CQ(S ) given in the last column. For comparison, the profile 
parameters of an insulated flat-plate boundary layer with no suction at M^ = 1.2 are y^ = 5.85, y^t = 
2.31 and H = 3.54. The maximum orossflow is W ^^ = -0.115, and it occurs at station N = 4 (s /c = 
0.0059). This value is virtually identical to tne maximum possible crossflow generated by the Falkner- 
Skan-Cooke profiles of Section 13, where V^ = -0.119 for ?>-^ = 1.0 and ip^^ * 'Pp = ts"- Although the 
pressure gradient first becomes adverse at N =14, W does not change sign until N = 21. For N = 15 to 
26 (s /c = 0.128 to 0.625), there are two inflection points in the crossflow velocity profile. Up to N = 
20 (s /o = 0.364), W has the same sign at both inflection points; for N > 20, W has opposite signs. 
There is reverse crossflow from N = 17 to 27 (s /c = 0.211 to 0.661). The angle e^^ is the angle of the 
velocity vector at the y of the inflection point of the crossflow velocity profile. When there are two 
inflection points, the listed e^ is for the outer point when Vj^^^ < 0, and for the inner point when V^^^ > 
0. 

14.2 Crossflow instability 

Surprisingly little crossflow is required for crossflow instability to occur. For example, it was 
found with the similar boundary layers of Section 13 that for ^^^ = - 0.02 and ili^^ * ^D ' '^^° ^'''^^ angle 
that generates the maximum crossflow for a given pressure gradient), the critical Reynolds number of 
crossflow instability for both boundary layers is close to 1100 even though V^^^^^  is only about 0.6$. 

Figure 14.2 gives a comparison of the distribution of the amplification rate a with the magnitude 
of the wavenumber vector ? as computed at K = 4 from both the incompressible and sixtn-order compressible 
stability theories. It is evident that the incompressible theory gives reasonably good results, with o^^^^ 
= 7.30 X 10~3 compared to 6.59 x 10"^ from the compressible theory, a difference of 10.8?. The eighth- 
order compressible equations give o^ax = 6.51 x 10"^, a difference of only 1.2? from the sixth-order 
system. Consequently, there is little reason to use the eighth-order system, and for a. general study of 
crossflow instability near the leading edge the incompressible theory is adequate. 

The angle ^ of the wavenumber vector as computed from the incompressible theory is also shown in 
Fig. 14.2. Almost identical results are given by the compressible theory. The narrow bandwidth of 
unstable and wide bandwidth of unstable k is characteristic of crossflow instability. The sharpness of 
the angular "tuning" increases as the crossflow decreases. For example, at N = 17 where W ^^ = -0.0094, 
the bandwidth of unstable k is about the same as in Fig. 14.2, but the bandwidth of unstaDle 'p is only 
0.15°. 
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Table 14, .'2 Properties of mean boundary layer 

N ye ys* H R "max EiCdeg) 103cp 

1 3.81(7 1.0800 2.693 239 0 0 0 
2 3.8t3 1.0428 2.603 234 -0.0408 -1.977 0 
3 3.891 1.0157 2.538 259 -0.0936 -4.362 0 
4 3.950 0.9914 2.506 299 -0.1146 -5.142 0 
5 3.980 0.9511 2.480 338 -0.1116 -4.857 0.735 
6 i).017 0.9372 2.513 386 -0.0984 -4.198 0.700 
7 4.115 0.9819 2.614 462 -0.0866 -3.654 0.630 
8 4.218 1.0274 2.689 544 -0.0783 -3.283 0.530 
9 4.344 1.0921 2.787 642 -0.0717 -3.004 0.430 
10 4.475 1.1590 2.870 749 -0.0669 -2.795 0.290 
11 4.632 1.2468 2.974 879 -0.0633 -2.632 0.163 
12 4.900 1.3860 3.106 1141 -0.0568 -2.341 0.155 
13 5.141 1.5201 3.229 1435 -0.0485 -1.963 0.143 
14 5.442 1.7004 3.352 1924 -0.0337 -1.317 0.143 
15 5.635 1.8110 3.398 2395 -0.0215 -0.840 0.143 
16 5.709 1.8341 3.371 2776 -0.0140 -0.520 0.143 
17 5.732 1.8292 3.345 3112 -0.0094 -0.349 0.143 
18 5.721 1.8030 3.306 3397 -0,0065 -0.242 0.143 
19 5.706 1.7815 3.287 3675 -0.0046 -0.170 0.143 
20 5.685 1.7603 3.265 3934 -0.0031 -0.117 0.143 
21 5.685 1.7608 3.270 4226 0.0059 0.273 0.143 
22 5.701 1.7754 3.279 4653 0.0113 0.637 0.143 
23 5.708 1.7825 3.280 4743 0.0148 0.851 0.143 
24 5.623 1.7076 3.184 4709 0.0155 0.853 0.214 
25 5.494 1.6023 3.079 4567 0.0155 0.816 0.288 
26 5.369 1.5099 2.997 4440 0.0191 1.011 0.370 
27 5.217 1.4001 2.894 4238 0.0251 1.478 0.490 
28 5.028 1.2685 2.770 3944 0.0309 1.873 0.610 
29 4.827 1.1350 2.650 3618 0.0369 2.241 0.755 
30 4.608 0.9964 2.523 3250 0.0432 2.601 0.930 
31 4.392 0.8694 2.409 2898 0.0498 2.975 1.090 
32 4.205 0.7671 2.317 2608 0.0579 3.441 1.215 
33 4.062 0.6933 2.245 2399 0.0690 4.100 1.300 
34 3.952 0.6344 2.172 2233 0.0816 4.854 1.380 
35 3.853 0.5780 2.097 2065 0.0912 5.330 1.450 

It is of Interest to note that the angle ifj = 84.8° at the maximum amplification rate is almost 
identical to the angle 90 - |ej^|(= 84.9°), where E^^ is the angle defined in Section 14.1 and listed in 
Table 14.2. The near equality of these two angles has been found to be true in general for crossflow 
instability as long as 90 - |e^| is given the sign of V^^^^. When there are two inflection points and W 
has the same sign at each (15 i N ^ 20), it is the outer point, where DW is a maximum, that is significant 
for instability. When W has opposite signs at the two inflection points (21 ^ N ^ 26), it is the inner 
point, where DW is a minimum, that is significant. The above convenient relation between ip and e. makes 
it easy to compute an initial eigenvalue for crossflow instability. 

The real and imaginary parts of ((> are also shown in Fig. 14.2. The real part, <i> , has the same sign 
^^ "max' ^"'^ *r ^^ ^ffax' ^^^ wavenumber for maximum amplification rate, is proportional to W . At 
''max' *-'f'r = ^^-^ • Further back on the wing, this difference approaches 90° as the crossflow 
diminishes. The imaginary part of $, <i>^, reverses sign at the point of maximum amplification rate, a 
behavior that is true at all stations. 

Although crossflow instability has been defined as the existence of unstable steady disturbances, a 
whole band of frequencies becomes unstable at about the same critical Reynolds number. Figure 14.3 gives 
a as a function of F at N = 4 as calculated from both the incompressible and sixth-order compressible 
theories for k = 0.520, the k ^^ of F = 0. It is apparent that the effect of compressibility is about the 
same for all frequencies as for F = 0. The values of o x 10^ for k = 0.520 are: incompressible, 8.91; 
sixth-order compressible,   8.00;   eighth-order compressible,   7.90. 

There are both positive and negativ§ unstable frequencies in Fig, lit.3. The negative frequencies 
simply mean that with the direction of k defined by the values of ^ shown in the figure, the phase 
velocity is negative. If, instead, the direction of k had been defined in the usual manner to be the 
direction of the phase velocity, there would be two groups of positive unstable frequencies. For the 
positive frequencies^of Fig. 14,3, k is within 25° of the direction opposite to the crossflow; for the 
negative frequencies, k is within 5° of the direction of the crossflow. The sign convention of Fig, 14,3 
has been adopted so that the maximum instability will always be associated with a positive frequency, and 
this nonstandard definition of k is used here, as in Section 13.3, to make it easier to plot the numerical 
results. 

There is ^ wide band of unstable frequencies in Fig. 14.3. The dimensional frequency corresponding 
to F = 2.0 X 10 is 57.8 khz, and the most unstable frequency is about 17 khz. The unstable bandwidth 
becomes much narrower further downstream as both the crossflow and maximum amplification rate decrease. 
It was found in Mack (1979b) that for a boundary layer with crossflow instability only,   k        does not vary 
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much with frequency for F > 0. For F < 0, ^^^^-^ does change with frequency. It is estimated from Chap. 13 
that the unstable region of negative frequencies at N^= 1 extends to F = -1.5 x 10" with i|j = 92°, and 
that the maximum amplification rate of the wave with k in the crossflow direction is about one-half of 

that for the steady disturbance. 

As crossflow instability is an example of inflectional instability, it is possible to deduce 
something about the stability characteristics from the location of the inflection point of the relevant 
velocity profile. It is not necessary for this purpose to consider the generalized inflection point of 
the compressible theory which is little different from the true in|:ieotion point at transonic Mach 
numbers. The relevant velocity profile is the one in the direction of k. For the most unstable stationary 
wave (ih = 84.8°), this profile has reverse flow, and the inflection point occurs almost at the zero 
velocity point in accordance with the theory of Stuart [Gregory et al.(1955)]. Inflectional profiles 
exist for i) both greater and less than 8l(.8°. The sign of the mean velocity at the inflection point 
determines the sign of the frequency (except very near F = 0 because of the finite Reynolds number). The 
profiles with ijj > 84.8° give the negative frequencies; the profiles with i|j < 84.8 the positive 

frequencies. 

14.3 Streamwise instability 

Along with crossflow instability, which is particular to three-dimensional boundary layers, there are 
also inflectional and viscous instabilities which are more like those of a two-dimensional boundary layer, 
but with modifications due to the crossflow. This type of instability will be called streamwise 
instability, and it refers to all instabilities that are not associated with a directional velocity 
profile of the type of the crossflow and reverse-flow profiles. 

As suction is more effective at controlling streamwise than crossflow instability, only the latter 
instability is present over most of the wing chord in the present flow example. The region of streamwise 
instability starts at N = 14 (s*/c = 0.094), according to th| compressible theory, and extends to N = 25 
(s /o = 0.588). Some stability characteristics at N = 15 (s /o = 0.128), where the edge Maeh number of 
1.24 is close to its maximum value, are shown in Fig. 14.4. Figure 14.4a gives the distributions of a 
and F with wave angle from the incompressible and sixth-order compressible theories. The crossflow 
instability region ('!'> 80°) is not shown. The crossflow (W = -0.0215) has introduced an asymmetry 
into the distributions, but otherwise the results resemble what might have been expected from assuming 
that 2D results could be applied to 3D boundary layers. The two maxima in the amplification rate of the 
compressible theory contrast with the single maximum of the incompressible theory, and are in complete 
accord with 2D stability theory at M^ = 1.24. 

The reason that Fig. 14.4a resembles the results for a two-dimensional flat-plate boundary layer with 
no suction is that the shape factor H at N = 15 is almost the same as for such a boundary layer at the 
same Mach number, and the crossflow is not only small, but still in the direction associated with a 
favorable pressure gradient. The two inflection points of the directional velocity profiles, which exist 
for -90° < 'H -60°, are unimportant except near ip = -90°, because one is located near the wall and the 
other at the edge of the boundary layer. Consequently, what Fig. I4.4a shows is iigcQijs instability, just 
as for a flat-plate boundary layer at the same Mach number. 

The maximum amplification rate with respect to wavenumber is shown in Fig. 14.4b as a function of 
frequency for both crossflow and streamwise instability. It is evident that the incompressible theory 
gives a totally misleading result as to the importance of streamwise instability at this station. The two 
maxima of Fig. 14.4a are shown by two separate curves. The crossflow instability has the same general 
features as at N = 4, but with an unstable frequency band only about one-seventh as wide (cf. Fig. 14.3). 
Also the corresponding il^ are much closer to 90° for both positive and negative frequencies: 83.8° <^ < 
89.4° for F > 0; 89.4° < HX 90.4° for F < 0. It might also be observed that for i|) = 90°, the maximum 
amplification rate is about one-half of its F = 0 value, as surmised for N = 4. 

The term streamwise instability covers such a wide variety of possibiljj.ti|s that it is worthwhile to 
give an additional example. Figure 14.5 is the counterpart at N = 23 (s /c = 0.513) to Fig. 14.4. At 
this station, the crossflow over the inner two-thirds of the boundary layer has reversed, but is even 
smaller than at N = 15 (W = 0.0113). The adverse pressure gradient is larger (gj^ = -0.22), but because 
the suction is also larger there is still no inflection point in the streamwise velocity profile. 

It is seen from Fig. 14.5a that the waves with i|J < 0 are much more unstable than those with ij; > 0 
even though the maximum crossflow is positive. The reason is that f or ip < -40° the directional velocity 
profiles have inflection points well out in the boundary layer (e.g., at U = 0.30 for i^ = -70 ). A 
significant difference between Fig. 14.5 and Fig. 14.4 is that the smooth a^^^ curves of the former do not 
permit a clear distinction to be made between crossflow and streamwise instability. The frequencies near 
zero (say, F < 0.04 x 10" ) have the characteristics of crossflow instability (wide band of unstable 
wavenumbers, narrow band of unstable angles); the larger frequencies (say, F > 0.12 x 10" ) have the 
characteristics of streamwise instability (narrow band of unstable wavenumbers, wide band of unstable 
angles). The intermediate frequencies, including the most unstable, have the characteristics of 
streamwise instability for a narrow band of small wavenumbers, and of crossflow instability for a wide 

band of larger wavenumbers. 

The effect of compressibility is large and similar to that at N = 15 (Fig. 14.4) in the streamwise 
instability region, and is also a good deal larger in the crossflow instability region than at either N = 
4 (Figs. 14.3 and 14.4) or N = 15. Indeed the peak amplification rate of the incompressible theory 
differs by 27% from the sixth-order compressible value and the corresponding wave angle by 15°, whereas 
the maximum incompressible amplification rate of the steady disturbances is in error by 40$. The latter 
difference decreases further back on the wing as the amplification rate increases (to 14? at N = 35), but 
is always larger than in the negative crossflow region on the forward part of the wing. 

It is important to note the narrow bandwidth of unstable frequencies in Fig. 14.5b compared to Figs. 
14.4b, and 14.3.  The largest unstable frequency at N = 23 is only 5.2 khz, and the most unstable 
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frequency is 2.9 khz.     Consequently,   almost all unstable frequencies  that exist upstream of N = 23 cannot 
persist to this station as amplified waves even when they are kinematioally possible. 

It.'!    Wave amplitude 

The wave amplitude rather than the local amplification rate is what is of interest in transition 
studies. In this Section, the irrotationality condition on k will be applied to the calculation of 
amplitude ratios of single Fourier components. The SALLY stability code of Srokowski and Orszag (1977) 
calculates ln(A/Ag) by what is called the envelope method, i.e., by integrating (P )^ along the 
trajectory defined by the real part of the group velocity. As a result, the amplitude ratio increases 
monotonically to the end of the instability region. Here, a band of initial wavenumbers with the same 
frequency is followed downstream starting at the first unstable station, N = 3 (s /c = 0.0033). The 
resulting amplification rates for seven initial wavenumbers with zero frequency are shown in Fig. 11.6 as 
computed from the incompressible theory. The listed initial wavenumbers are those at N = 3. For 
comparison, a portion of the k^^ = 0.35 curve as computed from the sixth-order compressible theory is also 
shown. 

For R < 1000, the different initial wavenumbers in Fig. 11.6 act much like different frequencies in a 
2D boundary layer. The lower the initial wavenumber, the further downstream is its unstable region. For 
R > 1000, a rather different pattern is apparent in Fig. 11.6. The initial wavenumber of the wave 
component which has the maximum amplification rate at a given station becomes a slowly varying function of 
Reynolds number. In other words, a single Fourier component is nearly the most unstable over a wide range 
of Reynolds numbers. It is this pattern that prevails in the entire rear crossflow instability region. 
There the wave component wjth^k^ = 0.35 at N = 21 (R = 21)00, s*/o* = 0.419) is the most unstable from R = 
2600 to at least R = 3570 (s /c = 0.906). Consequently, in this region the procedure we are using here 
gives the same result for the amplitude ratio as does the SALLY code. 

The ln(A/AQ) values that correspond to the amplification rates of Fig. 14.6 are shown in Fig. 14.7 
for six Fourier components along with the result given by the SALLY code (computed by Dr. A. SrokowsfcL), 
The present method gives a peak in the envelope curve, ln(A/AQ) ^^ vs. R, at about R = 1400 (s /c = 
0.128). ji Ir^ contrast, the curve from the SALLY code continues to rise to a value of ln(A/AQ) = 11.2 at R = 
1880 (s /c = 0.259). The peak with the irrotationality condition is a consequence of following Fourier 
components from a more unstable region to a less unstable region, and can also be encountered in 2D 
boundary layers with laminar-flow control. 

Two additional curves included in Fig.14.7 give ln(A/AQ) for k. = 0.35 as computed from the sixth- 
and eighth-order compressible equations. The peak ln(A/AQ) of theT.atter is about 6.9 compared to 7.8 
from the incompressible theory and 11.2 from the SALLY program. Consequently, the method of integrating 
the maximum amplification rate overestimates the peak amplitude ratio by over 70  times. 

As both Figs. 14.3 and 14.4b show that a non-zero frequency has the maximum amplification rate for 
crossflow instability, it is also a non-zero frequency that gives the maximum amplitude ratio. The 
possible importance of these frequencies is, however, counteracted by the narrowing of the unstable 
frequency bandwidth in the downstream direction. The result is that at K = 15 the frequency with the 
maximum amplitude ratio is the low frequency F = 0.05 x 10^ (1.4 khz), and the peak ln(A/Ar,) of this 
frequency is only 2% larger than for zero frequency. Of course, larger differences than this exist 
upstream of N =  15  where higher frequencies are still unstable. 

At station N = 35 in the rear crossflow instability region, the amplitude ratio of the most unstable 
zero-frequency wave component, k^^ = 0.35, is 6.54 according to the incompressible theory, a result almost 
identical to the SALLY value of n = 6.46. However, compressibility cannot be neglected in this region as 
it was in the forward instability region. The sixth-order compressible theory gives ln(A/Af,) = 5.24 at N 
= 35;   thus the incompressible theory overestimates ln(A/AQ) by 25%. 

Streamwise instability is limited to the region from N = 1 5 to N = 25 (s"/c* = 0.588) and leads to 
smaller amplitude ratios than does crossflow instability. As these waves travel downstream, their wave 
angle i|; remains very close (within about 1°) to its initial value, in contrast to the crossflow 
disturbances which are required by the dispersion relation to keep their angles within the narrow band set 
by the profile angle s^. According to Fig. 14.4b, F = 0.375 x lO"*" is the most unstable frequency for 
streamwise instability at N = 15. However, this and the neighboring unstable frequencies damp out quickly 
in the downstream diij^ec^on. The frequencies which give the largest amplitude ratios are those which are 
unstable at N = 23 (s /c = 0.513), where the largest amplification rates of streamwise instability occur 
For example, F = 0.09 x lO-** becomes unstable at N = 21 and has a peak ln(A/Af,) of 2.3 at N = 25 for an 
initial wave angle of -70°; F = 0.15 x 10"^ becomes unstable at M = 20 and has a smaller peak at N = 24. 
Consequently, the maximum amplitude growth of streamwise-instability waves is only about 1$ of that of the 
crossflow disturbances. Examples of amplification rates for a wing without suction may be found 
elsewhere   [Mack  (1981)]. 
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APPENDIX  1.     COEFFICIENT MATRIX OF  COMPRESSIBLE STABILITY EQUATIONS 

There are 30 non-zero elements of the coefficient matrix a^^jCy) of Eq. (8.11).    The Z^  equation has 
only one non-zero coefficient: 

a^2 =  ■■   • (A1.1) 

The Zg equation has six non-zero coefficients: 

ag-, = (iR/UT)(aU+BW-M)+a^+B^  , (A1.2a) 

322 = -(1/VJ)(dU/dT)DT , (A1.2b) 

323 " (R/^T)(aDU+BDW)-i(a2+g2)(i/p)((m/clT)DT 

-i(1/3)(1+2d)(a2+g2)(OT/T) , (A1.2c) 

a2j, = (lR/y)(a2+32)_(i/3)(i+2d)(a2+B2)-YM^(ciU+eW^) , (A1.2d) 

a25 = (1/3)(1+2d)(a2+B2)(ciU+gw_a))/T-(1/u)(dy/dT)(aD2u+BD2w) 

-(1/lj)(d^/dT2)DT(aDU+gDW)  , (A1.2e) 

325 = -(1/y)(dlJ/dT)(aDU+BDW) (A1.2f) 

The Z-3  equation has four non-zero Coefficients: 

33^ = -i , ■ (A1.3a) 

333 = DT/T  , (A1.3b) 

334, = -lYM^CaU+BW-oj)  , (A1.3c) 

835 = (i/T)(aU+3W-a)) . (A1.3d) 

The Zu  equation is the only one that requires a lengthy manipulation to derive.  With 

E = {R/y)+i(2/3)(2+d)YM2(aU+3W-oj)  , (ALU) 

the six non-zero coefficients are 

a^, = -(i/E)[(2/u)(dU/dT)DT+(2/3)(2+d)(DT/T)]  , (A1.5a) 

aj,2 = -(i/E) , (A1.5b) 

843 = (1/E)[-(a2+B2)+(2/3)(2+d)(DT2/T)(1/y)(dy/dT) 

+ (2/3)(2+d)(D^T/T)-(iR/yT)(aU+BW-&))]  , (A1.5c) 

ajji, = -(i/E)(2/3)(2+d)YM2[(aU+BW-a)) 

X-(1/ij)(dy/dT)DT+aDU+6DW+(DT/T)(aU+BW-a))] , (A1.5d) 

a;,5 = (i/E){(1/vi)(dp/dT)(aDU+BDW)+(2/3)(2+d) 

X [(1/u)(du/dT)(DT/T)(aU+BW-a))+(aDU+BDW)/T]} , (A1.5e) 

a^g = (i/E)(2/3)(2+d)(aU+BW-a)) . (A1.5f) 

The Zc equ3tion has only one non-zero coefficient: 

agg = 1 . (A1.6) 

The Zg equation hss six non-zero coefficients: 

3g2 = -2a(Y-1)M|(aDU+BDW)/(a2+e2)  , (A1.7a) 

ag3 = (Ra/y)(DT/T)-i2a(Y-1)M^2(„inj+gj3;,)  ^ (AI.Yb) 

ag^ = -i(Ra/u)(Y-1)M^(aU+BW-a))  , (A1.7c) 

ag5 = i(Ra/uT)(aU+BW-aj)+a2+B2_(D2T/K:)(dic/dT) (A1.7d) 

-(DT^/K) (d2K:/dT2)-a( Y-1 )M^( l/yXdM/dT) (DU^+DW^) 

agg = -(2/K)(dK/dT)DT  , (A1.7e) 

agg = -2a(Y-1)M|(aDW-BDU)/(a2+B2) . (A1.7f) 
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The Z_ equation has only one non-zero coefficient: 

378 = 1  . (A1.8) 

The Zg equation has five non-zero coefficients: 

agg = (R/yT)(aDW-BDU)  , (A1.9a) 

ag^ = -(1/Vi)(dy/dT)(aD2w-BD2u)-(1/u)(d2lJ/dT2)DT(aDW-BDU) ,       (A1.9b) 

agg = -(1/u)(du/dT)(aDW-B0U)  , (A1.9c) 

ag7 = (iR/yT)(aU+BW-a))+a^+B^  , (A1.9d) 

agg = -(1/u)(dp/dT)DT . (A1.9e) 

In these equations, the ratio of the second to the first viscosity coefficient 

d = X/y (A1.10) 

is taken to be a constant and equal to 1.2 (Stokes' assumption corresponds to X = 0). 

In the numerical computations, we use 

y* X 10^ = 1.1t58T*3/2/(x»+iio.l))  ,      T* ^ 110.4°K , 

0.0693873 T*  , T* < 110.4°K 
(A1.11) 

for the viscosity coefficient in cgs units, and 

K* = 0.6325T*1''2[-,^(245.t/T*)10-''2/T']-1 (A1.12) 

for the thermal conductivity ^oefjicient in cgs units.    The Prandtl numberOr e*U*/K* is computed as a 
function of temperature  from \i ,   K    and a constant specific heat of c* = 0.24.        ^ 

APPENDIX  2.     FREESTREAM SOLUTIONS  OF  COMPRESSIBLE STABILITY EQUATIONS 

In the freestream U=U^ , W=W., T=1, \l = ^, K=^/a^, and all y derivatives of mean-flow quantities are 
zero.    The first six of Eqs.   (8.11)  can be written as three second-order equations: 

D^V^ = bi^V^ + bi2V2 + b^gVg  , (A2.1a) 

D^Vj = bggVg + bjjVg  , (A2.1b) 

where 
D^Vg = bjjVg + bggVg   , (A2.1c) 

V, = Z^  ,  V2 = Z^  ,   V3 = Z5  . (A2.2) 

The three coefficients of Eq. (A2.1a) are 

b,^ = a^+B2+iR(aU^+6W^-ii)) , (A2.3a) 

b^2 = l(a^+6^)[R+i(1/3)(1+d)YMf(aU,+BW^-a))]  , (A2.3b) 

b^2 = -(1+2d)(a2+32)(aU^+BW,-co)  . (A2.3c) 

The two coefficients of Eq. (A2.1b) are 

b22 = a2+B^-(R/E,)[YMf-(2/3)(2+d)a(Y-l)M2(au^+BW,-u)2]  , (A2.4a) 

b23 = (R/E,)[1-(2/3)(2+d)a](aU^+BWi-aj)  , (A2.4b) 

where E^ is Eq. (A1.4) evaluated in the freestream.  The two coefficients of Eq. (A2.1c) are 

^32 = -i(Y-1)Mio(aU,+BW^-a))  , (A2.5a) 

bgj = a^+B^ + iaR(aU^+BW^-a))  . (A2.5b) 

The six solutions of Eqs. (A2.1) have the form 

v(i)(y) = B(i>exp(Xiy)  ,     (i=1,6)  , (A2.6) 

where the V ^    are the six three-component solution vectors,   the X^ are the six characteristic values,   and 
the B^       are  the  six  three-component characteristic vectors.     Upon substituting Eq.   (A2.6)  Into Eqs. re • 
(A2.1),   the  characteristic values are found to  be 

^1,2 =  +{(1/2)(b22+b33)-[(1/4)(b22-b33)2+b23b32]1/2jl/2   _ (^2.7a) 

^3,4  = ^  (''ll^^^^     ' (A2.7b) 
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S,6 = +|(1/2)(b22+b33) + [(1/il)(b22-b33)2+b23b32]^^2|^''^ , (A2.7o) 

where the numbering has been arranged so that the first two of these will correspond to the first two of 
Eq. (2.1J9). 

The last two of Eqs. (8.11) give a fourth uncoupled second-order equation 

D^Z^ = [a2+g2+iR(aU^+BW^-a))]Z^  , (A2.8) 

with the characteristic values 

A, Y 8 = +[a^+B^+ifi(aU,+3W,-a))]^''2 , (A2.9) 

which are the same as the characteristic values A_ ^. 

The components of the characteristic vector corresponding to A_ are 

B/3^ = 1  ,   B2^3), = 0  ,   63^3) . 0  , (A2.10) 
and to A, and A^ are, 

B/J^  =  [b^2(''33-^^)-''l3''32]/^^^-'>1l)   • (A2.11a) 

Bj^j^  = b33-A2  , (A2,11b) 

Bg^j^  = -b32  . (A2.II0) 

The components of the characteristic vectors of the original solutions are: 

A/J)   =  B/J)   ,       A2(J)   =   AJB/J)   ,       A^^J)   =  B2(J)      , 

A^^J)  =  83(^5   ,       Ag(J)  =  AjB3(J^   ,       (j =  1,6)     , (A2.12) 

and the component A^^'''  is found from the continuity equation: 

AjAg^J^   =  -iB/J)-i(aU^+eW^-ai)[YM^B2^J^-B3^J^]     . (A2.13) 
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(a) VISCOUS INSTABILITY 

Fig.  3.2    Inviscid   temporal   damping   rate   v£ 
wavenumber for Blasius boundary layer. 

(b) INVISCID INSTABILITY 

Fig.   1.1    Typical  neutral-stability  curves. 
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Fig.   3.1     Alternative   indented   contours   for 
numerical integration of inviscid equations. 
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Fig. 6.1 Neutral-stability curves for Blasius 
boundary layer:  (a) F vs. R; (b) a„ vs. R; (o) 
c vs. R; - aax> 
are with respect to frequency 

(A/AQ) ^^; both maxima 
uency at constant B. 
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Fig. 6.2 Distribution of 2D spatial amplification 
rate with frequency in Blasius boundary layer at 
R = 600 and 1200. 
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Fig.  6.3    Maximum   2D   spatial   amplification  rates 
a and 5 as functions of Reynolds number 

max ^max 
for  Blasius boundary layer. 
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Fig. 6.1 2D IHCA/AQ) as function of R for several 
frequencies plus envelope curve; Blasius 
boundary layer. 
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Fig. 6.5 Distribution of 2D IHCA/AQ) with 
frequency at several Reynolds numbers, and 
bandwidth of frequency response as a function of 
Reynolds number;   Blasius boundary layer. 
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Fig. 6.6 Effect of wave angle on spatial 
amplification rate at R = 1200 for F x 10^ = 
0.20, 0.25 and 0.30; Blasius boundary layer. 
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Fig. 6.7 Complex group-velocity angle vs. wave 
angle at E = 1200 for F x lo'' = 0.20 and 0.30; 
Blasius  boundary  layer. 
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Fig. 6.8 Effect of wave angle on ln(A/AQ) at 
several Reynolds numbers for F = 0.20 x 10"^; 
Blasius  boundary  layer. 
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Fig. 6.9 Eigenfunctions of u amplitude at R = 
800, 1200 and 1600 for F = 0.30 x 10"^; Blasius 
boundary layer. 
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Fig. 6.10 Eigenfunctions of u phase at R = 800, 
1200 and 1600 for F = 0.30 x 10"''; Blasius 
boundary layer. 

Fig. 6.11 Energy production 
and 1600 for F = 0.30 x 10' 
layer. 
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Fig.  6.13    2D   envelope-curve   frequencies   of 
Falkner-Skan  boundary  layers. 

D 0.2 0.4             0.6 0.8 1.0 
u.;; 1 1                 1 

0 - lo - 

-0.2 - 
2© 

3o 

5o 

- 

-0.4 - 
4© 

y^ - 

-0.6 1 i                 1 1 

Fig.  6.15    Temporal eigenvalue spectrum of Blasius 
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Fig. 7.1 Constant-phase lines of wave pattern 
from harmonic point source in Blasius boundary 
layer; F = 0.92 x 10"^, R = 390. [After Gilev 
et al. (1981)] 
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Fig. 7.2 Centerllne amplitude distribution behind 
harmonic point source as calculated by numerical 
integration, and comparison with 2D normal mode; 
F = 0.60 X 10"^, Rg = 485, Blasius boundary 
layer. 
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Fig. 7.3 Centerllne phase distribution behind 
harmonic point source as calculated by numerical 
integration; F = 0.60 x 10"'*, R^ = 1(85, Blasius 
boundary layer. 
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Fig. 7.4 Comparison of measured and calculated 
centerllne amplitude distributions behind 
harmonic point source; F = 0.60 x 10" , R = 
485,   Blasius  boundary layer. 
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distribution at R = 700 behind harmonic point 
source; F = 0.60 x 10"^, Rg = 485, Blasius 
boundary layer. 
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Fig. 9.1 Phase velocities of 2D neutral 
inflectional and sonic waves, and of waves for 
which relative supersonic region first appears. 
Insulated wall, wind-tunnel temperatures. 
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Fig. 9.3 Pressure-fluctuation eigenfunctions of 
first six modes of 2D inflectional nev^tral waves 
(c=c   ) at M.| = 10.    Insulated wall, T^ = 50°K. 
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Fig. 9.5 Pressure-fluctuation eigenfunctions of 
first six modes of 2D noninflectional neutral 
waves (o=1) at M- = 10. Insulated wall, T.j = 
50°K. 
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Fig. 9.6 Effect of Maoh number on maximum 
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Fig. 9.8 Temporal amplification rate of first 
and second modes vs. frequency for several wave 
angles at M^ = 1.5.  Insulated wall, T.| = 311°K. 
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Fig. 9.10 Effect of wave angle on maximum 
temporal amplification rate of first and second- 
modes at H.| = 4.5, 5.8, 8.0 and 10.0. Insulated 
wall, wind-tunnel temperatures. 

Fig. 9.12 Effect of wall cooling on ratio of 
maximum temporal amplification rate with respect 
to both frequency and wave angle of first and 
second modes at M. = 3.0, 4.5 and 5.8 to 
insulated-wall maximum amplification rate. 
Wind-tunnel temperatures. 
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Fig. 9.11 Effect of Mach number on maximum 
temporal amplification rates of 2D and SD first- 
mode waves. Insulated wall, wind-tunnel 
temperatures. 
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Fig.  9.13    Effect   of   extreme   wall   cooling   on 
temporal  amplification rates^of 2D waves  for 
first four modes at M^ = 10, T.,  = 50°K:     , 
insulated  wall; ,   cooled  wall,   T^^/Tj,  = 
0.05. 
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Fig. 10.1 Comparison of neutral-stability curves 
of frequency at (a) M., r 1.6 and (b) M^ = 2.2. 
Insulated wall,  wind-tunnel temperatures. 
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Fig. 10.2 Effect of Maoh number on 2D neutral- 
stability curves of wavenumber. Insulated wall, 
wind-tunnel temperatures. 
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Fig, 10.4 Distribution of maximum first-mode 
temporal amplification rates with Reynolds 
number for 3D waves at M- = i).5, 5.8, 7.0 and 
10.0.    Insulated wall,   wind-tunnel temperatures. 
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Fig. 10.6 Effect of Reynolds number on maximum 
second-mode temporal amplification rate at M.j = 
t.5, 5.8, 7.0 and 10.0. Insulated wall, wind- 
tunnel  temperatures. 
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Fig.   10.8    Effect of wall cooling and heating on 
Reynolds number for constant IHCA/AQ) at M-  = 
0.05. 
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Fig. 10.10 Effect of Mach number on the maximum 
temporal amplification rate of first and second- 
mode waves at R = 1500. Insulated wall, wind- 
tunnel temperatures. 
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Fig. 10.9 Effect of wall cooling on 2D neutral- 
stability curves at M, = 5.8, T? = 50°K. 

Fig. 10.11 Effect of Mach number on the maximum 
spatial amplification rate of first and second- 
mode waves at R = 1500. Insulated wall, wind- 
tunnel temperatures. 
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Fig. 11.1 Peak mass-flow fluctuation as a 
function of Reynolds number for six frequencies. 
Viscous forcing theory; M- = 1.5, Tp = 0°, c = 
0.65)   insulated  wall. 
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Fig.   12.1    Hotating-disk boundary-layer velocity 
profiles. 

Fig. 12.3 Wave angle vs. azimuthal wavenumber at 
three Reynolds numbers for zero-frequency waves; 
sixth-order  system. 
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Fig. 12.2 Spatial amplification rate vs. 
azimuthal wavenumber at seven Reynolds numbers 
for zero-frequency waves;   sixth-order system. 
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Fig. 12.4 Ln(A/A)Q vs. azimuthal wavenumber at 
four Reynolds numbers for zero-frequency waves 
and wave angle at peak amplitude ratio; sixth- 
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Fig. 12.5 Ensemble-averaged normalized velocity 
fluctuations of zero-frequency waves at C= 1.87 
on rotating disk of radius r^j = 22.9 cm. 
Roughness element at Rg = 2t9i 9 = 173°. 
[After Fig.   18 of Wilkinson and Malik (1983)] 
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Fig. 12.6 Normalized wave forms and constant- 
phase lines of calculated wave pattern produced 
by zero-frequency point source at Rg = 250 in 
rotating-disk  boundary  layer. 

R X 10" R X 10' 

Fig. 12.7 Calculated amplitudes along constant- 
phase lines of wave pattern behind zero- 
frequency point source at R = 250 in rotating- 
disk  boundary  layer. 
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Fig. 12.8 Comparison of calculated envelope 
amplitudes at R = 400 and t66 in wave pattern 
produced by zero-frequency point source at R = 
250 in rotating-disk boundary layer, and 
comparison with measurements of Wilkinson and 
Malik (1983) (O, R=397; □ , R=it66). 
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Fig.   13.1    Coordinate systems for Falkner-Skan- 
Cooke  boundary  layers. 

Fig. 13.3 Effect of pressure gradient on maximum 
crossflow velocity; Falkner-Skan Cooke boundary 
layers. 

Fig. 13.2 Falkner-Skan-Cooke crossflow velocity 
profiles for Bjj = 1.0, 0.2, -0.1 and SEP 
(separation, -0.1988377); INF, location of 
inflection point; MAX, location of maximum 
crossflow  velocity. 
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Fig. 13.t Effect of flow angle on maximum 
amplification rate with respect to frequency of 
ijj   = 0° waves at R =  1000 and 2000 in Falkner- 
Skan-Cooke boundary layers  with =  i0.02. 
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Fig.  13.5    Effect of pressure gradient on minimum 
critical Reynolds number:     ,  zero-frequency 
orossflow  instability waves in Falkner-Skan- 
Cooke   boundary   layers   with 6 =   15°;     1    2D 
Falkner-Skan boundary layers  [from Wazzan et al. 
(1968a)]. 
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Fig. 13.6 Effect of flow angle on minimum 
critical Reynolds number of zero-frequency 
orossflow waves f or 3 j^ = 1.0 and -P.198837T 
Falkner-Skan-Cooke  boundary  layers. 
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Fig. 13.7 Instability characteristics of Bjj = 
1.0,6 = 15° Falkner-Skan-Cooke boundary layers 
at R = 100: (a) maximum amplification rate with 
respect to wavenumber, and unstable ijj -F region; 
(b)   unstable  k-F  region. 
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Fig.   13.8    Effect of wave angle on amplification 
rate, wavenumber, and group-velocity angle for F 
=   2.2  X   10-^  at   R  =   276;    3^  =   -0.10,6   =   15 
Falkner-Skan-Cooke  boundary  layer. 
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Fig. 13.9 Instability oharaoteristlos of Bj^ = 
-0.10, 6 = 1)5° Falkner-Skan-Cooke boundary layer 
at R = 555: (a) maximum amplification rate with 
respect to wavenumber, and unstable k-F region; 
(b)  unstable  ip-F  region. 

Fig.   11.2    Amplification  rate,   wave  angle,   and 
group-velocity angle  as functions  of  wavenumber 
at N = 4  (E=301)  for F = 0:      ,   incompressible 
theory;  ,  sixth-order compressible theory; 
35° swept wing. 
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Fig.  It.3    Unstable   frequency   range   at  N  =   i( 
(R=301)   for   k   =   0.520:       ,    incompressible 
theory,  , sixth-order compressible theory; 
35 swept wing. 

Fig. 14.1 Coordinate systems used for infinite- 
span swept wing. 
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Fig. U.t Crossflow and atreamwlse instability at 
N = 15 (R=1323); (a) maximum amplification rate 
(with respect to frequency) and frequency as 
functions of wave angle; (b) maximum 
amplification rate (with respect to wavenumber) 
as function of frequency:     ---i   incompressible 
theory;  , sixth-order compressible theory; 
35° swept wing. 

Fig. 14.5 Crossflow and streamwise instability at 
N = 23 (R=2661). (a) Maximum amplification rate 
(with respect to frequency) and frequency as 
function of wavenumber angle; (b) maximum 
amplification rate  (with respect  to wavenumber) 
as function of frequency:      ,   incompressible 
theory;  , sixth-order compressible theory; 
35° swept wing. 
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Fig, lit.6 Amplification rates of seven zero- 
frequency wave components in forward instability 
region of 35° swept wing with irrotationality 
condition applied to wavenumber vector:      , 
incompressible   theory; ,   sixth-order 
compressible  theory for kj   =  0.35. 

Fig. 11.7 LHCA/AQ) of six zero-frequency wave 
components in forward instability region of 35° 
swept wing with irrotationality condition 
applied to wavenumber vector and comparison with 
SALLY code;  , incompressible theory; , 
sixth-order compressible theory for k.  = 0.35; 
 , eighth-order compressible theorvVor k.  - 
0.35. 1 
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ENVIRONMENT AND RECEPTIVITY 

\     ' by 

Professor E.Reshotko 
Dept. of Mechanics & Aerospace Engineering 

Case Western Reserve University 
Cleveland, Ohio 44106, USA 

SUMMARY • 

In an environment where initial disturbance levels are small, the transition 
Reynolds number of a boundary layer is very much dependent upon the nature and 

~~"    -^  .-,.-.-.      . . .... ^^ 

id 
:e 

..-.,, -     .     ^   ;y and 
acoustic disturbances. It also outlines the technique of the initial value problem, 
which promises to be a significant additional tool for providing guidance toward the 
resolution of receptivity issues. 

INTRODUCTION 

Boundary Layer transition can be viewed as the consequence of the non-linear 
response of that very complicated oscillator, the laminar boundary layer to forcing 
disturbances. These disturbances are part of the environment in which the boundary 
layer develops and could include free-stream vorticity and entropy disturbances, 
radiated sound, surface vibrations, etc. or any combination of these. 

As in any forced vibrations problem we must first determine and understand the 
free oscillations or normal modes of the oscillator. Then it would seem desirable to 
model transition in a way that simulates experiment - namely, to take a given initial 
disturbance spectrum (forcing function) and follow it forward in time. The response 
would depend on the receptivity (Morkovin 1969) of the boundary layer to the 
particular disturbance assumed, and the subsequent disturbance amplification. 

By receptivity is meant the means by which a particular forced disturbance 
enters the boundary layer and the nature of its signature in the disturbance flow. 
If the initial disturbances are sufficiently large, they can grow by forcing 
mechanisms to non-linear levels and lead directly to turbulent flow. If they are 
small, they will tend to excite free disturbances in the boundary layer. These free 
disturbances are the aforementioned normal modes of the boundary layer and are often 
referred to as Tol Imien-SchlIchting (T-S) waves. The nature of each of these normal 
modes is determined from the solution of the eigenvalue problem arising from 
consideration of the linearized disturbance equations subject to appropriate boundary 
conditions. Boundary layer stability analyses have been generally restricted to 
studies of the normal modes. It is the means by which these normal modes are excited 
that will be developed in this lecture. 

The questions that we address under the heading of receptivity have been asked 
tor a very long time. It is however only within the last fifteen years or so that the 
serious study of this topic was undertaken. The present author's interest in this 
topic was stimulated in the middle 1960's by his dissatisfaction with use of the 
."ilW J^^?-^° ■ "™'=®'^ fs one of the common correlating factors for transition. From 
nn^hif= "^"K^°"f ^T^r^^' /.^ "^^ ^h°^" (Reshotko 1969) that transition Reynolds 
numbers can be dependent on dimensionless forms of the frequency or wavelength and 
orientation spectra of the disturbance environment, and that this could in fact 
account for the so-called "unit Reynolds number effect." Mack (1975) has since 
aemonstrated that by incorporating initial disturbance spectral information into I 
transition prediction method, the experimental variation of transition Reynolds 
number with unit Reynolds number is correctly reproduced. It follows directly that 
irXTf%e!Jl^ !L%'!'''   ^"^ ^="^°^^^"^ determinant in the transition Z'cWTnl 

^^^.'^^l.''^f^P^'-''}:^y.P^^'^omenon differs from stability both physically and 
mathematically. Physically, it is the signature in the boundary layer of some 
externally imposed disturbance. Mathematically, the problem is no longer one of 
homogeneous equations with homogeneous boundary conditions, but one where either the 
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equations and/or the boundary conditions are non-homogeneous. Hence, in contrast to 
the normal modes stability calculations, the receptivity phenomenon is not an 
eigenvalue problem. The boundary layer is driven by the external forced oscillations, 
and its response is a "neutral' solution of the linearized disturbance equations 
having the same frequency as the particular forcing disturbance being considered. 
Each class of forcing disturbance has its own particular inhomogeneity. 

Receptivity can of course be studied both experimentally and analytically. The 
combination of the two is clearly most desirable. The experiments are directed at 
understanding the receptivity to a particular class of environmental disturbance and 
much of the available analyses are attempts at direct modeling of the experiments. 
In the last several years, however, there has been a resurgence of interest in the 
technique of the initia1-va1ue problem as an additional means of studying 
receptivity. The initial-value formulation has the advantage of pointing out very 
clearly whether and how a given class of disturbance or else an alteration in 
boundary conditions excites the normal modes of the boundary layer. It is however 
not very useful for numerical computation. Once a relationship is defined through 
initial-value considerations, the character of the expected result is known, and 
numerical results are best obtained through direct modeling and computation. 

The major portion of this lecture will be devoted to a somewhat detailed 
description of three receptivity phenomena for which there is some information. The 
lijcture will conclude with a presentation of the initial-value problem technique and 
a discussion of some of the cases solved so far using this technique. 

EXAMPLE RECEPTIVITY STUDIES 

Receptivity to Free-Stream Turbulence , , 

The signature in the flat plate boundary layer of the disturbances due to free- 
stream turbulence was measured by Klebanoff (1964). Some additional results of his 
from 1971 are shown in Fig. 1. For the low free-stream turbulence levels shown, the 
u' levels in the boundary layer peak at a Blasius 7J of about 2.3 and attain maximum 
levels of the order of 1% of free-stream velocity. Klebanoff noted that the signal 
through a low-pass filter at 12 Hz was almost identical in amplitude to the signal 
over all frequencies and hence concluded that most of the signal is at 
frequencies below 12 Hz. Similar results have been obtained by Leventhal and 
Reshotko (1981) and by Kendall (1982). Klebanoff's suggested modeling of this result 
is as the response to a low-frequency unsteadiness in free-stream velocity. His 
result is that the variation in u' should be as the product 7^" °f *^^^ Blasius 
functions. This is an excellent simulation of the experim.ental results except that it 
approaches zero rather than the free-stream level at the edge of the boundary layer, 
and therefore does not relate the peak amplitude to the free-stream turbulence level. 

To acquire further insight into the role of free-stream turbulence on 
transition, Rogler and Reshotko (1975) analytically and numerically studied the 
interaction between an incompressible boundary layer and a low intensity array of 
single-wave-number vortices convected at the mean free-stream velocity (Fig.2). The 
flow field is taken to be the sum of the steady laminar field (Blasius) plus a flow 
field ascribable to the effects of the vortex array. This latter flow field is 
further subdivided into the portion that exists in the absence of the plate (the 
vortex array itself) plus a flow field representing the alteration to that array due 
to the shearing mean flow and no-slip and impermeability conditions at the plate 
surface. This last portion of the flow field is described by a non-homogeneous Orr- 
Sommerfeld equation with dimensionless phase-speed unity and real wave number. The 
forcing function depends on the mean flow and on the free-stream disturbance array. 
It was found that amplitudes in the boundary layer grow in the downstream direction, 
with the maximum amplitude arising near the leading edge for small vortex diameters 
and further downstream for larger diameters (Fig. 3). Rogler and Reshotko further 
speculate that if initial turbulence levels are sufficiently large, the disturbances 
can grow by forcing mechanisms to nonlinear levels and lead to turbulent flows 
without resort to T-S amplification. This is an example of what Morkovin calls a 
"high intensity bypass." 

A possible case in point is Poiseuille pipe flow. Wygnanski and Champagne (1973) 
observed that when their smooth pipe was carefully aligned (with a very good entrance 
section) turbulent slugs were observed at Re > 50,000, which they ascribed to the 
consequences of entrance-flow instability. Transition could be initiated at 
lower Re (2000 < Re < 2700) when a large disturbance was introduced into the inlet. 
Furthermore, their observed disturbance amplitude near the wall at Re = 2360 was 
greatly damped, consistent with the aforementioned calculations of Rogler and 
Reshotko (1975) for a flat plate. Hence the speculation that observed pipe flow 
transitions at Re ~ 2500 are due to large initial disturbances that grow to nonlinear 
levels by forcing mechanisms, since Poiseuille pipe flow is stable to T-S waves and 
the entrance flow does not become unstable until much larger values of Re are 
attained. 
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Another experiment relatedto the Rogler-Reshotko work is that reported by 
Kachanov, Koslov and Levchenko (1978). These authors measured the disturbances in a 
flat-plate boundary layer due to a vibrating ribbon placed just ahead of the leading 
edge of the plate and at a height that is outside the boundary layer over most of the 
portion of the plate. The results are shown in Fig.4. The lower neutral point is at 
approximately 300 mm. from the leading edge.To be noted is the small response inside 
the boundary layer relative to the amplitudes outside the boundary layer, at least 
until the wake of the vibrating ribbon is ingested into the boundary layer. This 
compares well with the parallel-flow result from Rogler and Reshotko (1975) shown in 
Fig. 5. The implication is that free-stream disturbances initially outside the 
boundary layer have little influence on disturbance levels in the boundary-layer, and 
thus those disturbances that enter the boundary layer do so near the leading edge. 

The above work has not yet established how the free-stream disturbances excite 
growing T-S waves. This latter question was addressed by Rogler (1977) who 
constructed a rudimentary initial-val ue analysis for this problem. His choice of 
initial condition is not consonant with the response to the forcing function, hence 
the eigenfunctions (normal modes) must be added in in some measure to satisfy the 
chosen initial condition. This analysis needs to be redone in a more formal way in 
order to validate Rogler's result. 

In the absence of a complete receptivity model for free-stream turbulence. Hack 
(1977) developed an ad-hoc transfer function receptivity model in order to 
incorporate free-stream spectral information into his transition prediction procedure 
based on an amplitude criterion. This enabled him to come up with a rather successful 
e transition criterion where the exponent n is a function of the free-stream 
turbulence level. 

Kendall (1984) has recently reported preliminary results of his experiments on 
receptivity of a flat-plate boundary layer to free stream turbulence. He observed 
that free stream turbulence produced large-amplitude, low frequency fluctuations in 
the boundary layer whose lateral width was only a few boundary layer thicknesses but 
whose length is estimated to be very much longer. Within the T-S band of 
frequencies, upstream of Re^*= 1000, there was little amplitude in the region of the 
boundary layer where T-S eigenfunctions are prominent. The large amplitude, low- 
frequency mode responded almost linearly to the free stream fluctuation amplitude 
while the T-S mode seemed to respond in a faster than linear manner once detected. 
It is clear that more measurements are needed to clarify the issues. 

Receptivity to Acoustic Disturbances 

The sensitivity of transition Reynolds number to acoustic disturbances was 
studied by Spangler and Wells (1968) in a wind tunnel where they could closely 
control the characteristics of the settling chamber. Their results are shown in Fig. 
6. _ For reference, the results of Schubauer and Skramstad (1948) are also shown oii 
this figure. To be noted is that with decrease in turbulence level, Schubauer and 
Skramstad's transition Reynolds numbers increase until they reach their limiting 
value of about 2.8 x 10°. By making their own settling chamber essentially anechoic, 
Spangler and Wells attained a transition Reynolds number of about 5.2 x 10^. 
Acoustical excitation could diminish the transition Reynolds number at particular 
frequencies as could grids. This figure suggests also that the NBS tunnel was 
acoustically limited at turbulence levels below about 0.1%, a notion already put 
forward by Schubauer and Skramstad. The Spangler and Wells (1968) experiments did 
not at all examine receptivity issues so that the acoustic signatures in the boundary 
layer and the means of exciting growing T-S waves were not studied. 

This was however done in an experiment by Shapiro (1977) on a flat plate 
boundary layer in a low turbulence wind tunnel, reported also by Leehey and Shapiro 
(1979). Fig.  7a shovs    the amplification and phase of a disturbance as 
measured in the boundary layer excited by an upstream loudspeaker mounted on the 
tunnel centerline. Upstream of the lower branch neutral point (Ret* = 1000) a 
standing wave pattern appears with wavelength equal to that of the T-S wave at the 
excitation frequency. Downstream of the lower branch neutral point, the T-S growth is 
observed and the phase is that expected for the calculated phase speed of the T-S 
wave. Fig. 7b showscorresponding calculations made by Thomas and Lekoudis 
(1978) under the premise that the standing acoustic wave and T-S wave are independent 
in the region of the displayed measurements and so can be superimposed. The 
similarity between the calculated and experimental results supports the premise and 
the related argument by Leehey and Shapiro (1979) that by whatever mechanism, the 
acoustic wave excites the T-S wave in the immediate vicinity of the leading edge. 

This matter was pursued further by Murdock (1979) who modeled the acoustic field 
by unsteady boundary layer solutions and then used these solutions as initial 
conditions for a Navier-Stokes computation of the boundary layer response. As long as 
the initial condition was applied very near the leading edge, a T-S wave resulted. 

a 

However the amplitude of the T-S wave at the lower branch neutral point was very 
sensitive to the point at which the initial condition was applied. Hence the 
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receptivity condition was not yet clearly identified. 

A more satisfactory resolution has come in the recent paper by Goldstein (1983) 
in which the method of matched asymptotic expansions was used. Goldstein's result is 
best understood with the aid of Fig. 8 taken from his paper. Near the leading edge, 
the motion is governed by the unsteady boundary layer equations. Farther downstream 
it is governed by the Orr-Sommerfeld equation with slowly varying coefficients. 
Goldstein shows that in between (6Jx/U. =fl'(l)) there is an overlap domain where the 
appropriate asymptotic forms of the Lam and Rott (1960) unsteady boundary layer 
solutions match, in a matched asymptotic sense, the T-S wave solutions to the Orr- 
Sommerfeld equation. The key element in the matching is that the asymptotic 
eigensolutions of Lam and Rott (1960) have wavelengths that decrease with downstream 
distance as x"*^*. The matching is effected when the wavelength becomes that of the T-S 
wave at the excitation frequency. At the base of the boundary layer downstream of the 
overlap region is a Stokes shear layer of progressively decreasing amplitude. The 
T-Swave continues to decay until the lower branch neutral point is reached atwhich 
point it begins to grow. 

Morkovin (1984) has also indicated that recent experiments at the Illinois 
Institute of Technology on the receptivity of laminar boundary layers to acoustic 
excitation have verified the essential features of the Goldstein (1983) model. 
Extensive hot-wire mapping of the streamwise velocity amplitude and phase resulting 
from a pulsating source showed streamwise variations of the amplitude of the acoustic 
pressure gradient. The T-S waves evolve from those length scales in the streamwise 
amplitude variation that are in the T-S band. H. Fasel has done confirming Navier- 
Stokes calculations at Morkovin's request. 

Thus the conjectures of the prior investigators are all verified. The 
receptivity occurs near the leading edge through the mechanism whose details are 
supplied by Goldstein (1983). Downstream of the overlap region, the sound wave and 
T-S wave proceed independently with the latter growing in the T-S amplification 
region. 

Response of Boundary Layer to a Moving Sound Wave 

Measurements by Kendall (1970) on a flat plate at Mach number 4.5 in the JPL 20" 
supersonic tunnel with turbulent boundary layers on the tunnel walls show all 
frequencies to grow monotonically from the leading edge - well ahead of the minimum 
critical point - and the source of these disturbances has been identified as the 
sound field radiated from the tunnel wall boundary layers. Thus the sound field 
interacts with the boundary layer to provide growing disturbances in a region that is 
stable according to stability theory. In an attempt to account for these 
observations. Mack (1970,1971) altered his stability theory to include the response 
of a boundary layer to incoming sound waves. He in fact identified the radiated sound 
from the tunnel walls with incoming supersonic disturbances to the test boundary 
layer and proceeded to calculate the response of the boundary layer to this incoming 
forced disturbance. Satisfaction of the impermeability condition at the plate 
requires that there be a reflected sound field from the plate. 

Fig. 9 compares roass-flow-fluctuation amplitudes due to an incoming sound field 
with the result from the most unstable eigensolution at the same frequency and 
Reynolds number.The ratio m'/m'j is of the rms mass-flow fluctuation to that of the 
incoming wave in the free stream at y = 0. For the forced disturbance the peak 
amplitude in the boundary layer is 16 times that of the incoming wave, while in the 
freestream m'/m']- of the combined incoming and reflected waves is less than 2. The 
peak m' of the eigensolution is scaled to the same peak as the forced curve. Note how 
close the two functions are over most of the boundary layer despite the mismatch in 
phase speed and direction of propagation. Fig. 10 gives the ratio of m'p, the peak 
rms mass-flow fluctuation in the boundary layer, to m'j. Disturbances of all 
frequencies are seen to grow rapidly with distance from the leading edge, reaching a 
peak in the vicinity of the region at which amplification due to instability begins. 
The magnitude of the peak is inverse to the frequency. 

Mack then calculated the growth of disturbances at selected frequencies by using 
the forcing theory up to the neutral stability point and stability theory beyond the 
neutral point. The calculated results agree very well with measurements of 
disturbance amplitudes at three different frequencies as shown in Fig. 11 (Kendall 
1975), lending some credence to the hypothesis. However, the mechanism by which the 
forced wave turns into the free wave is unknown and has been ignored by Mack, 
although the process most assuredly does take place, as seen in Fig. 12 (Kendall 
1971). The measurements show the dimensionless wave speed, initially supersonic 
relative to the free stream, to accelerate during its streamwise travel, 
approaching a speed approximately equal to that predicted by stability theory. 

The results in Fig. 11 are essentially the signature of disturbance growth 
triggered by tunnel sound and are representative of additional measurements by 
Kendall (1975) at Mach numbers 3 and 5.6. At Mach numbers 1.6, 2.2 and 8.5, the 
observed frequency response in the boundary layer shows definite peaks at the most 
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unstable frequencies of stability theory and little if any effect of tunnel sound. 
Hence the most pronounced contamination of the wind tunnel environment by radiated 
tunnel sound seem>s to be in the middle-Mach-number range that stretches from 2.5 to 7 
or so. In the recent comparison of wind tunnel and flight transition results by 
Dougherty and Fisher (1980), the departure of the wind tunnel results from the flight 
trends occurs at a Mach number of about 1.7. 

THE INITIAL VALUE PROBLEM 

The use of the initial value formulation in hydrodynamic stability studies dates 
back at least to the work of Case (1960, 1961). Aside from the polemical content of 
those papers. Case pointed out that the eigenfunction representation of an arbitrary 
disturbance must include not only the discrete normal modes but also the continuous 
spectrum of modes even if they are only decaying modes. It has been pointed out by 
others since (Grosch and Salwen 1978 for example) that the continuous spectrum is 
essential in considering disturbances that move with the free-stream velocity and are 
non-decaying in the free stream outside the boundary layer. The work of Rogler and 
Keshotko (1975) involves direct computation of elements of the continuous spectrum. 

An important early solution of an initial value problem is by Caster (1965) 
where it was shown that an analytic representation of a vibrating ribbon does in fact 
lead to excitation of the growing discrete T-S wave. This was also shown usino 
direct numerical computation by Nagel (1967). 

Interest in the formal initial value problem has been recently revived. 
Gustavsson (1979) has formulated the temporal initial value problem, and Tsuoe and 
Rogler (1983) have done the same for the case of spatial growth. The latter work will 
here be sketched out. The details that follow are adapted from an application of the 
Tsuge-Rogler formulation to a problem with a wavy wall boundary condition (Aldoss and 
Reshotko 1982).  The wavy wall is here replaced by a straight wall. 

The dimensionless two dimensional disturbance vorticity equation for 
incompressible parallel flow is 

where v is the dimensionl ess normal fluctuating velocity, and f^= ^^    is the -M 
y 

Reynolds number. The boundary conditions at the wall from impermeability and no slip 
are '^ 

while V is bounded as y approaches infinity. 

Applying a Fourier transform in time and a Laplace transform in space is 
appropriate to spatial growth formulations. The Fourier and Laplace transform pairs 
are as follows: '^ 

Fourier 

-eo 

vf^ix.t)    =J5[1-'''^;(35.,«)j<. (sk-) 

Laplace 

.0* 

$-  v^('3>^/^) = ye~'^ v(>4>x,ai)Jx (U) 

v(^i.,«)=x.U«|(^.,^„3i, (u) 
-LtO 
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The disturbance equation (1) after successive forward transforms (3a) and (4a) 
becomes 

where D = d /dy,  oC= -is and c =dO/of.  The operator on-the left side of (5)is 

the Orr-Sommerfeld operator while 

A.  V    _  /i> .       -,»A 

-ifs'O      +-S^^I       +sA'l       +I-7VI       +S^*-i^^l     1        r4\ 

is a function of the initial conditions evaluated at x = 0 . The boundary conditions 

on  S  are 

§(o>«<;")  = $ (O^of^dj) = O (7a.) 
I 

^ $ are boo^JcJ as u-> co (."70 

The solution of (5) is composed of the four complementary solutions of the Orr- 
Sommerfeld operator plus a particular solution. 

The complementary solution can be written 

where the asymptotic forms (large y) of the <P;'s are 

i>,^er'"^       i-e^^        <l>^-e^'i      <f>^^e^'^ C^) 

in which  ^^ e cC"^-^ io<R (j-e)   with Rk^yd. 

The particular solution by variation of parameters is 

j = l %■ 

where W is the Wronskian of the complementary solutions and     Wj is the cofactor 

of  the Wronskian  determinant with the   sign   reversed. 

The  solution  can now be written 
y 3 ~i 

where 
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and 

A = E,3_ = 4,^ 4i^ - <^,'^ <^^^ 

Setting  A= 0 yields the dispersion relation for the discrete normal modes. The 

coefficients O.^  and O.^  in (11) must be zero from the boundedness condition. 

The solution in physical variables is obtained by successive Laplace and Fourier 
inversions according to (4b) and (3b) respectively. The Laplace inversion involves 
summation of the contributions from the poles and branch cuts of (11) in the complex- 
s plane of the Laplace transformed variable (Fig. 13). The branch cuts indicate the 
contribution from the continuous spectrum while the poles arise from the discrete 
normal modes ( fl, = 0) and also possibly from the functional form of F., related to 
the initial disturbances at  x = 0*  (Tsuge and Rogler  1983). 

condition''("2kTV"^ ribbon problem (Gaster 1965) is formulated by replacing boundary 

where ^ is the ribbon circular frequency, and carrying through the rest of the 
analysis as indicated. As shown by Gaster (1965), the solution indicates excitation 
of the discrete T-S waves and ascertains the validity of the vibrating ribbon 
technique for experimental studies of stability. 

The technique of the initial value problem is a most powerful analytic procedure 
tor determining the prospective involvement of normal modes in any particular problem. 

CONCLUDING REMARK 

Although much progress has been made in identifying and understandinq 
receptivity issues in the last ten years or so, much remains to be done. The 
detailed character of free stream turbulence as observed in wind tunnels has yet to 
be measured and the finer points of its signature in the boundary layer leading to 
excitation of T-S waves clarified. The receptivity to acoustic disturbances is in 
better shape. 

Initial value analyses are an additional tool for providing guidance toward the 
resolution of receptivity issues. 
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'TRANSITION  DESCRIPTION AND  PREDICTION 
IN  THREE-DIMENSIONAL  FLOWS' 

by 

D.I.A.  Poll 

Aerodynamics Division, College of Aeronautics, 
Cranfield Institute of Technology, Cranfield, 

Bedfordshire, MK4 3 OAL, England. 

INTRODUCTION. 

_ In situations where the phenomenon of boundary layer transition is important in an 
engineering sense the mean boundary layer flow is almost invariably highly three- 
dimensional.   Therefore, from a purely practical point of view, an understanding, or at 
least an appreciation, of the implications of mean flow three-dimensionality must be 
assigned a high priority for those who wish to design engineering systems in which 
boundary layer transition is an important factor.   At present there are two spectacular 
high technology projects under development which illustrate the importance of three- 
dimensional effects very clearly.   These are the 'Swept Laminar Flow Wing' and the 
Space Shuttle  projects.   Present generation civil transport aircraft have little or 

no laminar boundary layer flow on their wings and, consequently, operate at relatively 
high drag levels.   The object of the 'Laminar Flow' project is to obtain a significant 
drag reduction on a swept-back wing by maintaining laminar flow over a much larger 
fraction of the surface area than has hitherto been the case.   There are two ways in 
wnxch this is being approached.   The first is to tailor the geometry,and hence the 
pressure distribution,in such a way that the regions of natural laminar flow are 
increased - this could result in a modest drag reduction of between 5 and 10% in the 
cruise condition.   In the second case the target is full chord laminar flow and to 
achieve this it is necessary to make use of tailored geometry (pressure distributions) 
plus active control systems such as distributed surface suction and possibly even 
surface cooling.   With full chord laminar flow it is estimated that the total (2-D) 
profile drag coefficient of a wing section could be reduced from 0.005 to 0.001 at 
cruise conditions.   However, each of the techniques proposed for the sustaining of 
laminar flow poses its own particular engineering problems.   For example, the aerofoil 
geometry necessary for maintaining laminar flow in cruise may not produce the high lift 
coefficients required during take off and landing.  This probably necessitates 
the use of a morfe effective flap system which in turn means extra weight and, therefore 
extra induced drag.   A similar situation occurs with the provision of a suction system 
which also involves extra weight.   Clearly the success or failure of such a project 
rests squarely upon the designers ability to predict and, hence, avoid boundary layer 
transition.   In the case of the Space Shuttle the problem is one of minimising the 
weight of the thermal protection system (IPS).   During the re-entry phase the Shuttle 
has to loose a very large amount of kinetic energy and this is achieved by adopting a 
high_drag attitude (incidences of order 30^-40°).   Whilst this acts as a very effective 
braking mechanism it carries a penalty in the form of very large amounts of convective 
heat transfer to the windward face.   Since the Shuttle is constructed primarily from 
metal it is clear that if mechanical integrity is to be maintained then the primary 
structure must be protected - hence the need for the TPS.   On the current vehicle the 
TPS constitutes approximately 12% of the total structure weight (not including fuel or 
crew members) and this is equivalent to about 30% of the absolute maximum payload weight. 
Therefore, since the TPS serves no purpose other than that of passive insulation there 
are substantial payload improvements available if the weight of the TPS can be reduced. 
Over the years many studies have been conducted in this important area and, from these. 
It is abundantly clear that the choice of insulating material, its distribution over the 
surface and even the re-entry trajectory followed by the vehicle, are critically 
dependent upon the state of the boundary layer on the windward face.   Therefore a 
truly optimum  system can only be achieved through a complete understanding of the 
laminar to turbulent transition process. 

The material to be presented in these lectures may be conveniently separated under 
two headings.   The first is entitled 'leading edge problems' and in this section the 
consequences of three-dimensional mean flow will be discussed in the context of 
transition taking place in the immediate vicinity of the leading edge of a swept wing. 
This is an_appropriate choice since most people will be familiar with the terminology 
and, more importantly, it is a situation where the transition process has particular 
engineering significance.   The second heading is entitled 'More General Considerations' 
and here the mechanisms and principles discussed under the first heading will be re- 
examined in relation to more complex situations and also to transition in compressible 
flows with heat transfer. 
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NOTATION. 

C     cross-flow velocity component 

CJ: local skin friction coefficient 

CQ    chord length measured normal to leading edge 

d     trip wire diameter 

H     streamwise shape factor 

K    relaminarisation parameter (equation 13) 

M    Mach number 

p static pressure 

Q resultant velocity  (U^ + V   )^ 

R Reynolds number 

R attachment line similarity parameter   (equation 6) 

Rd trip wire Reynolds number  (equation 7) 

Rr^ displacement thickness Reynolds number 

Rg momentum thickness Reynolds number 

s separation between trip and turbulence detector - measured along attachment line. 

T temperature 

Tu turbulence level 

U, non-dimensional chordwise velocity gradient at the attachment line (equation 3) 

U,V,W velocity components outside the boundary layer 

u,v,w velocity components inside the boundary layer 

'K,y,z   orthogonal curvilinear coordinate system - see figure 1. 

g     angle between the wall shear-stress vector and the velocity vector at the edge 
of the boundary layer. 

r intermittency factor for a transitional flow 

5 boundary layer displacement thickness in the streamwise direction 

^ boundary layer displacement thickness in the cross-flow direction 

S height above the wall at which the velocity reaches 0.99Qe 
.99 

e     angle between the chordwise direction and the direction of disturbance 
propagation 

1 attachment line characteristic length (equation 4) 

" boundary layer momentum thickness 

A leading-edge sweep angle 

^  . dynamic viscosity 

V kinematic viscosity 

P density 

■^ shear stress 

e      angle between the direction of disturbance wave propagation and the 
cross-flow direction. 

X      cross-flow characteristic Reynolds number (equation 10) 
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Subscripts. 

AL at  the attachment line 

d at  a distance d above the surface 

e at the edge of the boundary layer 

MAX at the maximum value 

r recovery conditions 

T at the onset of transition 

w at the wall 

6 in the ti  direction 

* at 'reference' conditions 

"" in the undisturbed free stream 

0.01 C MAX at the point where the velocity has dropped to 1% of its maximum value. 

Part 1 - Leading Edge Problems. 

Let us begin by considering a body with constant cross-section and of very large span, 
placed in a uniform flow such that the flow is everywhere normal to the  spanwise 
generators.   In this situation the boundary layer which forms on the body will be 
two-dimensional and it will begin at a stagnation line.   From our experience of 
transition in two-dimensional mean flows we would always expect to find a region of 
laminar flow in the vicinity of the stagnation line.   This is because all Reynolds 
numbers based upon local velocities tend to zero as the stagnation line is approached. 
We now modify the situation slightly by sweeping the body relative to the oncoming 
flow as shown in figure 1.   Now the angle between the undisturbed free-stream velocity 
vector and the normal to the spanwise generators is no longer zero, but has some value 

A , where A  is the leading edge sweep angle.   If the free-stream Mach number is 
small enough for the flow to be everywhere subcritical (Mg <1) then the chordwise 
pressure distribution will be unchanged provided that it is normalised with respect to 
the normal-to-leading-edge component of the free-stream dynamic pressure.   This is 
known as the independence principle for the external flow and its validity can be 
demonstrated experimentally.   Therefore, the flow outside the boundary layer is three- 
dimensional since it has velocity components U,V and W but these are functions of x and 
z only.   The boundary conditions at the edge of the viscous region then take the form - 

f(x) constant 
V„ 

(1) 

Under these conditions the steady laminar boundary layer equations also have a solution 
for which u, v and w are functions of x and z only.   The governing equations for this 
situation are - 

_3u 

3x 

3w 

3z 

(continuity) 

3u    3u  „   e   a^u 

3x    3z   ® dx   3z^ 

(x-momentum) (2) 

.3V 
1 — 

3x 

■3v 
f— 

3z 

3'v. 

3z^ 

(y-momentum) 

Since the continuity equation and the equation for momentum in the x (chordwise) 
direction do not include terms containing spanwise velocity, v,we conclude that the 
boundary layer profile in the normal-to-leading-edge direction is independent of 
sweep.   The equation for the spanwise flow component, however, can only be solved 
once the chordwise solutiDn is known.   Therefore, the application of sweep 
produces an additional velocity component, (v) without altering any of the other 
features of the flow.   The question that is posed is what effect does sweep have on 
the transition behaviour for this flow? 
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(a)   Transition in the Attachment Line Boundary Layer. 

Consider the flow about the body when the Reynolds number is yery very large. 
In this limiting case we may consider the boundary layer to be vanishmgly thin and 
the surface of the body can then be assumed to coincide with a particular stream 
surface of an inviscid flow.   This stream surface first encounters the body along a 
line AA.   At this line the stream surface divides with one branch following the 
upper surface of the body and the other branch following the lower surface.   The line 
AA is generally referred to as a line of attachment or simply 'attachment line'.   For 
the case of the body at zero sweep the attachment line is also a locus of two-dimensional 
stagnation points and as such is often called the 'stagnation line'.   However when the 
body is swept the term stagnation line is no longer appropriate since there is now a 
spanwise component of velocity Ve, (V„ ).   In situations when the boundary layer is 
not vanishingly thin the 'attachment line' AA is taken to be the projection of the 
dividing stream surface onto the surface of the body. 

The flow near the leading edge of the swept body depicted in figure 1 is shown 
schematically in figure 2 and, in accordance with the above definition, the attachment 
line is represented by the line AA.   In the immediate neighbourhood of such a swept 
attachment line there is a region of sufficiently small chordwise extent where the flow 
at the edge of the boundary layer may be approximated to any desired degree of accuracy 
by the relations 

Ue and Ve constant, 

where 
d(Vc, 

(3) 

d("^Uj 

X = 0 

Under these conditions the boundary layer equations (2) have a similarity solution. 
The chordwise and spanwise velocity profile are, therefore, independent of x and y. 
This solution may be found in most standard texts on boundary layer theory e.g. 
Rosenhead-'- and the results are presented in figures 3 and M-.   The length scale for the 
solution is  n   where 

"f^Vd^ x=o 

- (4) 

Since the solutions are independent of x and y the velocity profile shown in figure 
is the attachment line velocity profile.   By integration of the profile it may be 
readily shown that 

•9 9=  3.055 n  , 

1.026 n - (5) 

and 0.404 n 

Clearly,  n itself serves as an entirely satisfactory_boundary layer length and this 
may be used to form a characteristic Reynolds number R, where - 

Ve.n 
V 

Ve^ Co 
vU  U 

- (6) 

This charactistic Reynolds number can also be derived simply on the basis of dimensional 
analysis - see Cumpsty and Head^,   Consequently, R serves as a similarity parameter 
for the attachment-line boundary layer even when the flow is transitional or turbulent. 

The transition characteristics of the swept attachment line were first encountered 
in the early 1960's during testing of the Northrop X-21A laminar flow aircraft - see 
Pfenninger'^ .   The X-21A had a special wing which employed boundary layer suction 
through slots in the surface.   The suction was intended to stabilise the laminar 
boundary layer and, in this way, it was hoped that laminar flow could be maintained 
over the whole chord at cruise conditions.   However, early flight tests revealed 
that the boundary layer on the wing was turbulent at the attachment line in the cruise 
conditions-a result which apparently had not been anticipated!   This discovery was 
corroborated by flight test data from a Handley Page laminar flow wing which was 
undergoing trials at the College of Aeronautics'* at the same time and, consequently, a 
number of wind-tunnel studies were performed in order to clarify the nature of the 
transition mechanism.   The experiments, which were performed by Pfenninger and his 
co-workers^ (Northrop), Gregory^ (National Physical Laboratory) arid Caster^ (College of 
Aeronautics), demonstrated that, in the presence of large boundary layer tripping devices 
such as streamwise end-plates, boundary layer fences, isolated three-dimensional 
roughness elements or two-dimensional trip wires, transition at the attachment line 
began when R exceeded approximately 250.   When small tripping_devices were used it was 
found that transition was delayed until much higher values of R were reached.   Similar 
results were also obtained in a later (1969) study performed by Cumpsty and Head''. 
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Before embarking on a detailed description of the attachment-line transition process 
it is appropriate to present a visualisation of the transition at the attachment line. 
Figure 5 shows a series of surface oil-flow patterns which illustrate the process very 
clearly.   For the visualisation a mixture of titanium dioxide and kerosene has been 
applied to the leading edge of a long cylinder swept at 63° relative to the oncoming 
flow.   In the first picture the wind speed is 28 m/sec and the oil has moved back until 
a line of laminar separation is reached.   The line of separation is, in fact, the leading 
edge of a swept separation bubble but, since oil was only applied to the leading edge 
region, the re-attachment line is not apparent.   For the second picture the flow speed 
has been reduced to 24 m/sec and a short length of 0.3mm diameter wire has been fixed 
across the attachment line so that the wire axis lies in the X,B plane with the ends 
situated at x = ±6mm.    The line of laminar separation is still clearly visible 
although it has been breached by a localised turbulent wedge which has its origin at 
the trip.   Finally, in the third picture the wind speed has been increased to the 
original value of 2 8 m/sec.   In this case the turbulence from the trip wire is no 
longer confined to a wedge but has spread along the span as witnessed by the disappear- 
ance of the laminar separation line - this is the manifestation of attachment-line 
transition or 'attachment-line contamination' as it is sometimes called. 

To date the only comprehensive investigation of the transition behaviour of the 
swept attachment line is that conducted by Poll and which is described in references 
8-11.   This work was conducted at low speed (less than 60 m/sec) on a large swept 
cylinder model.   The model was the same one used by Cumpsty and Head'7 for their attach- 
ment line studies and is fully described in references 7-11.   In this work great care 
was taken to ensure that the laminar flow did not exhibit any significant dependence 
upon the spanwise coordinate y and that the values of R and n   used in the data 
reduction were accurate.   The state of the attachment line was determined by observing 
the output from hot-wire anemometers. 

When the surface on which the attachment-line boundary layer forms is smooth 
and there are no sources of upstream disturbance, the transition will be the result of 
the amplification of the small scale fluctuations which are ever present in the free- 
stream.   In such a case the laminar flow will first selectively amplify certain 
disturbances, characterised by their frequency and wave number, and 'wave packets' 
will appear in the boundary layer.   For the swept attachment line these wave packets 
are observed at values of R in excess of 570 (R9 > 230) and typical examples are 
shown in figure 6.   Similar results have also been obtained by Pfenninger and Bacon  . 
By observing the disturbance waves at various chordwise positions it has been found 
that the wavefronts corresponding to the oscillations shown in figure 6 are locally 
normal to the spanwise generators of the cylinder i.e. the disturbances are predominantly 
two-dimensional.   As the wave packets are convected along the leading edge the 
disturbance amplitudes increase and eventually breakdown to form turbulent spots.   The 
occurrence of'.turbulent spots ^or bursts marks the onset of transition.   Clearly the 
process being described is similar to that which is observed in two-dimensional flows 
with low free-stream disturbances and, as such, might be expected to be in broad 
agreement with the predictions of linear stability theory.   Figure 7 presents the 
results of such a calculation together with the experimental data from references 11,12 
and 13.   The stability characteristics have been computed from the Orr-Sommerfeld 
equation which means that the velocity component normal to the wall and the wall 
curvature have been omitted from the analysis.   Transition onset has been predicted by 
an e"^ mqdel and the distance, s, represents the spanwise separation between the point 
of introduction of the disturbance and the point at which the disturbance breaks down 
to form a turbulent burst (both points being located on the attachment line).   For the 
experimental data the distance s represents the spanwise distance between the upstream 
tip of the model and the point at which transition is first observed.   It is apparent 
from the data that the use of R0  (= 0.40M- R) correctly accounts for the combined effects 
of free-stream Reynolds number, model geometry and sweep angle.   The data also indicate 
that the theoretical model produces the correct variation of R9T with sj although the 
predicted value of ReTis about 10% greater than that observed in the experiments.   It 
may also be noted that the infinite swept attachment-line velocity profile is more stable 
than the Blasius profile where the critical Re has a value of 201 and that for large 
values of s the results for e6, elO and el'+_lie very close together.   This latter piece 
of information suggests that the values of R (RQ) for the onset of transition may not be 
sensitive to the initial disturbance level provided that it is still small enough for 
the linearised theory to remain valid.   Therefore,despite the differences between theory 
and experiment, the res_ults presented in figure 7 indicate that for s L„    greater than 
20,000 an Rg of 230 (R = 570) represents an upper limit for a laminar flow which is 
stable to small disturbances in the free-stream.   If a laminar attachment-line boundary 
layer flow is to be maintained at values of R greater than 570 then some form of 
boundary layer control is necessary.   This problem is addressed by Pfenninger and Bacon 
in reference 13. 

In the flight work and experimental studies conducted up until 1975_it had been 
found that transition on the attachment line was occurring at values of R of about 250. 
Clearly, this observation cannot be explained in terms of the results presented in 
figure 7 i.e. in terms of linear stability theory.   In order to examine this unusual 
behaviour the swept cylinder experiments were extended to investigate the response of 
th^ laminar attachment-line boundary layer to the presence of trip wires of various 
diameter arranged so that the wire axis- lay in the x direction.   In addition the trip 
wires were very long in the x direction so that the attachment-line boundary layer was 
encountering an effectively two-dimensional excrescence.   The results of this exercise 
are summarised in figure 8 which shows the value of R necessary for the observation of 
the onset of transition (first bursts of turbulence) at a certain distance s from a 



5-6 

trip wire with a diameter d.   For very small values of d the results are 
indistinguishable from the 'free' transition results presented in figure 7.   As 
progressively larger trip wires are considered a critical value of d is encountered 
at which the transition is just controlled by the trip wire - larger values of d 
cause the transition onset location to move closer to the trip.   For trip wire 
diameters smaller than this critical value transition is preceeded by the appearance 
of wave packets.   When the trip wire is sized such that transition occurs between an 
R of 600 and itOO (0.8 <d/n < 1.6) it is found that bursteof turbulence still occur 
first at large spanwise distances downstream of the trip.   However the laminar 
perturbation which preceeds the turbulent burst is no longer a packet of Tollmien - 
Schlichting waves.   Instead the hot-wire reveals the presence of discreet disturbances 
travelling along the attachment line.   Figure 9 gives a series of oscilloscope traces 
which show the disturbance at various stages in its development.   If the trip diameter 
is increased si:ill further so that transition occurs at an R of between HOG and 250 
(1.6 < d/n < 2.0) then the turbulent bursts originate at the trip-wire and then propagate 
indefinitely along the span i.e. the onset of transition is observed at all spanwise 
stations at the same value of R.   Finally, when the trip size is such that transition 
begins at an R of less than 250 (d/ri> 2.0), the turbulent burstsstill originate at the 
trip wire but decay and ultimately disappear as they convect along the attachment line. 

The results of figure 9 indicate that the transition behaviour of the infinite 
swept attachment-line may be separated into four distinct regimes.   In the first 
the values of R for transition onset are high and the turbulence is the result of an 
instability of the laminar flow to the small disturbances present in the free stream. 
This region is bounded by a critical value of d/ n and for values of d/ri  greater than 
this limiting level the transition location is determined by disturbances introduced by 
the wire.   The behaviour is qualitatively similar to that observed in the flat plate 
boundary layer where the concept of a 'maximum tolerable roughness height' is well 
established - see for example Gibbings and Hall-'-'+.   However, comparisons between the 
tolerable heights for the flat plate and the attachment-line boundary layer indicate 
that the attachment-line is much less sensitive to the, presence of a two-dimensional 
trip-wire.   In the second region disturbances from the trip are dominating the transition 
process and the value of R for transition exhibits a strong dependence upon d/n 
The disturbance which is introduced by the trip wire is still essentially 'laminar'. 
However, no wave packets or Tollmien-Schlichting like disturbances are found.   Instead 
isolated perturbations (figure 9) are observed.   Although the precise nature of these 
disturbances is not yet known the traces are consistant with the view that a laminar 
vortex is being shed from the trip and this undergoes some kind of processing 
(amplification ?) before breaking down to turbulence.   For the flat plate case it is 
known that laminar vortex shedding can occur from a backward facing step for values of 
R6i   and d/g     greater than about 500 and 0.75 respectively - see Fasel et al(ref. 15). 
From figure 8 and equations 5 it may be shown that the corresponding limits for attachment- 
line flow are 410 and 0.8 - the similarity is obvious.   In the third region (250<R<400) 
the tripwire is still dominating the transition behaviour but with the turbulent bursts 
originating at the trip itself.   The data for this region suggest that the observed 
variation of R with d/n  is consistent with a constant trip-wire Reynolds number Rd where 

R^   =  fVd .dl  _  500 . - (7) [\^] 
Corresponding transition behaviour in flat plate boundary layers indicates that Rjj lies 
between 150 and M-00 - see Gibbins^^.   Once again we conclude that the attachment-line 
boundary layer is less sensitive to the presence of two-dimensional trip wires.   The 
fourth and final regime, however, is the one of most direct practical interest.   Here 
very large trip wires are perturbing the flow but if R is less than 2 50 the turbulent 
spots de£ay and ultimately disappear at some particular value of S/n  •   It would appear 
that an. R of 2 50 represents a lower limit for the indefinite propagation of turbulence 
along a swept attachment line when the boundary layer is subjected to a very large 
disturbance.   This aspect of the transition behaviour does not appear to have a 
counterpart in the flow over a flat plate.   Instead the behaviour is more in line with 
that found in axisymmetric pipe flow with highly disturbed entry conditions - see 
Wygnanski and Champagne-'-'^.   In this situation burst of turbulence (puffs) originate at 
the inlet and propagate indefinitely if the bulk flow Reynolds number exceeds 
approximate]:y 2000.   The puffs decay if the Reynolds number is less than 2000. 

This lower transition bound for the attachment-line flow is clearly the one which was 
found in the flight tests and studied experimentally in references 3 to 7.   For the 
flight cases, however, there were no trip wires, as such, fixed to the wing.  Instead the 
turbulent contamination was found to come from the wing/fuselage junction or boundary 
layer fences.   To investigate this case in the experiment the attachment line was 
contaminated by a turbulent boundary layer formed on a large streamwise end plate.   The 
results of this test are presented in figure 10.   Also shown are the extrapolated trip 
wire (d/ n -* <» )   results from figure 8 .   It can be seen that the limiting value for 
transition onset at large distances from the source of the disturbance is the same. 
We, therefore, conclude that, at large distances downstream from the contamination 
source, the lower bound for the exist^ence of turbulent bursts on a swept attachment line 
is given by a fixed value of R i.e. R equal to 250. 

Thus far the description of the attachment line transition process has been limited 
to the onset of transition i.e. the appearance of first bursts of turbulence.   In the 
early work on this subject the development of the flow from the laminar to the fully 
turbulent state received very little attention.   This was because the primary ojective 
at that time was to avoid transition.   The transition to complete turbulence was however. 
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n 
examined by Cumpsty and Head' and an attempt at computing Cumpsty and Head's transitional 
and turbulent velocity profiles was published by Cebeci^^.   At first sight it may appear 
that the transitional velocity profiles should be independent of spanwise position. 
However, this view cannot be correct since measurements carried out on isolated turbulent 
spots by GasterS and also by Firmin and Cookl9 have shown that for values of R greater 
than 2M-5 the spots expand in the y direction but shrink when R is less than 24 5.   It _ 
follows that the turbulent intermittency must vary in the spanwise direction even when R 
is fixed.   This problem has been examined by Poll^O for the case where transition is 
the result of contamination by a large upstream disturbance.   By using the Emmons21 
probalility theory for transition,a model of the attachment-line transition process, 
which_is consistant with all the available experimental data - including the growth of 
individual turbulent spots, was developed.   It was concluded that the intermittency 
at an infinite swept attachment line depends upon the parameters R, n and s in such a 
way that 

r = 1 EXP R - 245 

233 
+ 10 

Rn (8) 

for ^ > 
Ri 

Therefore, whilst under certain circumstances the onset of transition may be independent 
of spanwise position s, the completion of transition is always dependent upon s. 

b) Transition due to Cross-Flow Instability. 

Let us assume that the attachment-line boundary layer on the swept cylinder is 
laminar and stable to small amplitude free-stream disturbances (i.e. Rg < 230).   In the 
region close to the attachment line the streamlines at the edge of the boundary layer 
are highly curved in planes drawn parallel to the surface - as shown in figure 2.   The 
velocity profiles viewed in the chordwise and spanwise directions are very similar to 
those shown in figures 3 and M-.   Along any of the external streamlines (except  x = o) 
there is a favourable pressure gradient and one may expect that as a result of this the 
flow will be relatively stable to small disturbances.   However, it turns out that this 
is not the case. 

In order to assess the implication of the three-dimensionality of the boundary 
layer on the stability to small disturbances we make use of a piece of analysis which 
was performed over 30 years ago by Owen and Randall22 and Stuart^S.   They showed that 
in situations where"the disturbances are small (linearised theory), the mean flow 
component in the direction normal   to the wall is everywhere small (parallel flow I), 
derivatives in the normal-to-wall coordinate are very much larger than derivatives in 
the other coordinate directions (parallel flow II) and, finally, the effects of 
curvature of the disturbance wavefronts and the body surface are small, then, in a 
localised region of a three-dimensional boundary layer, the velocity component in the 
direction of propagation of the disturbance may be regarded as a two-dimensional flow 
for stability purposes.   Therefore,to determine the stability of a three-dimensional 
flow, at a given Reynolds number, it is necessary to examine all the possible directions 
available for disturbance propagation.   To facilitate this consider the coordinate 
system sketched in figure 11.   At a given position XQ the inviscid streamline at the 
edge of the boundary layer makes an angle e with the x direction such that - 

tan Ve 
Ue 

- (9) 

The direction of propagation of the disturbance under consideration makes an angle E 
with the X axis.   Figure 12 shows the velocity profiles for the three-dimensional 
boundary layer when various values of E are considered.   When E equals zero the 
profile is the chordwise velocity distribution shown in figure 3.   Similarly for e 
equal to  II/2 the profile is the spanwise velocity distribution shown in figure 4. 
These profiles are known to be stable (from the usual two-dimensional considerations). 
So too is the profile for E equal to  e   - the so called streamwise velocity profile. 
However, the significant feature of figure 12 is the appearance of the m and m' profiles. 
The m profiles are characterised by the existance of a point of inflection and having 
velocities which are all in the same direction whilst the m' profiles have the inflection 
point but have velocities which change sign.   In stability theory (Stuart23) the 
existance of a point of inflection within the velocity profile is of particular 
importance since it is a sufficient condition for instability at very large Reynolds 
number.   In practical terms this usually means that an instability to small amplitude 
disturbances is observed at very low Reynolds number.   Therefore, by simply sweeping 
the cylinder shown in figure 1, it is possible to destabilise the boundary layer since 
the sweep leads directly to the formation of the m and m' profiles. 

Experimental verificat 
and later by Anscombe and I 
investigations the location 
surface visualisation techn 
found that not only was the 
sweep but, in the laminar b 
the visualisation showed a 
direction of the flow at th 

ion of the destabilising effect was first observed by Gray24 
llingworth25 and Gregory and Walker ^'26_   j,^ each of these 
_of the boundary layer transition front was determined by a 
ique such as the 'china-clay evaporation' method^^.   it was 
transition front location' strongly affected by the angle of 

oundary layer immediately upstream from the transition front, 
series of closely spaced fine streaks almost aligned with the 
e edge of the boundary layer.   The pattern was very regular 



and the streak spacing was observed to be of order 6. 6^55. .    Moreover at the transition 
front itself the demarkation line -between laminar and "turbulent flow had a distinct "saw- 
tooth" form rather than the simple straight line normally observed for transition in_ 
two-dimensional flow.  These features are clearly visible in the 'china-clay' visualisation 
of transition on the windward face of a swept cylinder shown in figure 13 - see Police. 
The appearance of the streaks was taken as evidence that the laminar boundary layer had 
become unstable to a class of disturbance which had zero phase velocity i.e. one which 
was fixed relative to the surface.   It would appear that the major motivation for this 
conclusion was that the surface evaporation visualisation techniques showed similar 
streaks prior to transition in situations where a two-dimensional laminar boundary layer 
was flowing over a concave surface.   In this situation the familiar 'Gortler instability' 
(see reference 1) develops due to an imbalance between centifugal and inertia forces within the 
fluid and contra-rotating vortices (Taylor-Gortler vortices) develope with their axis 
aligned with the mean flow direction.   This observation had a very significant effect 
upon the theoretical work which was performed at the time.  The first attempt at correlating 
the conditions necessary for the onset of transition and the 'appearance' of streaks was 
conducted by Owen and Bandall29 (with a contribution by Squire30)_   Owen and Randall 
chose to characterise the three-dimensional nature of the swept wing boundary layer in 
terms of the cross-flow velocity profile shown in Figure 14.  This is the profile 
corresponding to the case E = (e-n/2) from  figures 11 and 12.  The characteristic local 
Reynolds number associated with this profile may be taken to be 

^  ^  '^max ^O.OICmax - dO) 
V 

Owen and Randall used x as a parameter to correlate the data of Anscombe and Illingworth25. 
It was proposed that conditions necessary for the first appearance of streaks in the 
evaporation pattern and also conditions necessary for the transition frontto be located 
very close to the leading edge (attachment line) could be represented by fixed values of x 
i.e. 

'^   Streaks   =145 

and in the limit as x/^   ->■  0 - (11) 

Xj     =  2 00 

(It should be noted that the numbers quoted here are not those originally quoted by Owen 
and Randall - a small correction has been applied to allow for the fact that their 
original definition ofX was slightly different from that given in equation 10.)   In 
terms of the Anscombe and Illingworth experiment the proposed correlations were'in'fair 
agreement with the observations.   However, it was not clear that the correlations were 
unique.   In fact, a subsequent investigation conducted by Boltz, Kenyon and Allen^-*- on 
a different aerofoil section,but with the same range of sweep angles/indicated that the 
value of X at transition could vary from 200 to 250.   Further doubt was cast on the 
validity of a transition criterion based upon a constant value of x by experimental 
investigations conducted on the flow over a disc rotating in a fluid which is at rest - 
see Gregory, Stuart and Walker23 and also Owen and Randall22.   in this case the critical 
values of X were found to be about 5 50 for the appearance of streaks,and 680,for 
transition,- considerably different from those found on the swept wings. 

The most serious difficulty encountered in the interpretation of these early 
investigations is that the situations considered experimentally were too complex.   In 
order to answer some of the more important questions an experiment was conducted on a 
'simple' shape by Poll.   The experiments, which are described in detail in references 
9, 10 and 28, involved the observation of the movement of the transition front on the 
windward face of the same long inclined cylinder used for the attachment-line transition 
investigation described in the previous section.   Four different techniques were used 
to observe the transition phenomenon.   These were china clay evaporation (see figure 13), 
surface oil-flow, hot-wire anemometry and surface Pitot tube.   Of the two visualisation 
techniques employed the surface oil-flow produced the clearest and most consistent results. 
A typical sequence of oil flows is given in figure 15.   The oil-flow shows the streak 
pattern which is characteristic of the disturbed laminar flow.   In the upper photograph 
the flow is laminar,though perturbed, right up to a laminar separation line, whilst 
in the lower photograph transition to turbulence is occurring in the attached flow 
resulting in a  suppression of the separation.   The oil-flow revealed streaks which had 
the same spacing as those observed in the china clay evaporation tests - namely 6.6,^ g • 
By using transparent plastic tape it was possible to transfer the flow pattern onto* a 
flat surface.   This meant that accurate measurements could be made of the location of 
the first appearance of the streaks and also of their orientation relative to the flow 
direction at the edge of the boundary layer.   It was found that the Owen and Randall 
parameter x provided an excellent correlation for the first appearance of the streaks. 
The results are shown in figure 16 from which it can be seen that 

^ Streaks xs 2 20 
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This is somewhat higher then the value of 14 5 quoted by Owen and Randall but the 
'  difference may be due to the fact that the china-clay evaporation responds to skin 
friction magnitude whilst the oil-flow responds to skin friction direction.   It is not 
at all clear that the two visualisation techniques should produce streak indications 
under the same conditions.   The orientation of the streaks relative to the x direction 
and also to the external streamline direction is given in figure 17.   It can be seen 
that the streaks are not quite aligned with flow direction at the edge of the boundary 

' layer-, although the difference is never more than 6 degrees for the range"of- parameters 
covered.   We note in passing that, since e for the streaks is less than the streamline 
angle, the velocity profile in the direction of propagation is one of the »•'  set shown 
m figure 12.^  Since the boundary layer on the cylinder was always less than 1mm thick 
at the conditions necessary to produce transition on the forward face the hot-wire 
anemometer could only be used as a diagnostic tool.   Nevertheless the hot-wire did reveal 
the presence of large amplitude travelling waves in the laminar flow ahead of transition. 
Example of the output signals are given in figure 18. Each shows two traces, the upper trace 
IS the output from a hot-wire mounted 14 cms (x/Co = 0.31) from the attachment-1ine i.e. 
at a location where the flow is perturbed by cross-flow instability.   The lower trace 
gives the output from a hot-wire mounted on the attachment line itself (x/Co =0).  In 
all the cases shown there are no detectable disturbances in the attachment-line boundary 
layer.   For the first picture (a) the cross flow Reynolds number x has a value of 257. 
Therefore conditions are such that a surface oil-flow visualisation would Indicate a 
streak pattern.   The hot wire signal is clearly showing the presence of a large 
amplitude travelling disturbance which has frequency of about 1100 Hz.   Moreover the 
disturbance is_not quite a pure harmonic, like those shown in figure 6 for example. 
Instead it exhibits the kind of distortion which is characteristic of a basic tone being 
contaminated  by higher harmonic components i.e. 2200 Hz, 3300 Hz etc..   In the second 
picture (b)_the cross-flow Reynolds number has been increased to 295 and the highly 
perturbed signal now clearly shows the presence of patches of very high frequency 
disturbance which are typical of a flow in the latter stages of breakdown to form 
turbulent spots.   Finally, for comparison, the last picture (c) shows the signal 
corresponding to turbulent flow (N.B. there is no turbulence or sign of instability at 
the attachment line).   The bulk of the transition data obtained from this experiment 
was obtained by using the surface Pitot-tube technique for the determination of 
transition onset.   Before the method was used, however, checks were made to verify that 
the different techniques employed in the experiment were in substantial agreement when 
it came to determining those conditions necessary for the onset of boundary layer 
transition at a fixed location on the model.   The results obtained in the tests 
are^summarised in figure 19 where the value of x at the onset of transition is plotted 
against attachment-line momentum thickness Reynolds number Re^^ at fixed values of x/co. 
This plot has some particularly interesting features.   For fixed values of X/QO a 
constant value of x describes the data quite accurately, provided that the attachment 
line remains stable to small disturbances.   i.e. provided R6.  < 240.   However, the 
critical value of x displays a very strong dependence upon X/Q^.   In particular', these 
results are considerably different from the Owen and Randall criterion given in equation 
(11).   The most likely explanation for this discrepancy is that the limiting transition 
results (X/Q  -> 0-) in the Anscombe and Illingworth2 5 ^gre in fact produced by the onset 
of attachment line contamination!   Nevertheless it is perfectly clear that the use of 
a single value of X'for the correlation of the conditions necessary for the onset of 
transition cannot be considered satisfactory.   However, following a suggestion of Arnal"^^ 
(see also Coustols33)^ „e find that an excellent correlation exists between the critical 
value of X and the streamwise shape factor, H^ •, , provided that situations in which the 
streamwise flow is unstable to small disturbances are excluded.   This is shown in figure 
20.   Therefore, under certain rather restrictive circumstances, the problem of transition 
via cross-flow instability can be expressed in terms of two parameters but never in terms 
of one parameter as was previously supposed. 

Part II - More General Considerations. 

a)   The possibility of relaminarisation. 

The reversion of a turbulent boundary layer to the laminar state in. regions of 
strong_favourable pressure gradient is a well established phenomenon in two-dimensional 
and axi-symmetric flows.   Experiments conducted in turbulent bounday layers have shown 
that when the pressure gradient is sufficiently large the characteristic 'inner region' 
breaks down and the fully turbulent laws cease to be valid.   From the data which are 
currently available it appears that this breakdown occurs when the local pressure 
gradient drops below a critical level i.e. relaminarisation begins when 

3/, 
|^<- 0.024^. fe 

see for example Narasimha and SreenivasanS't.   In the case of the infinite swept wing 
the corresponding expression is 

d£ ^    _  0.024 _ pQe3 

^^      cos(e+s)   V 
Cfe 
2 

3/2 
- (12) 

where  3  is the angle between the wall shear stress vector and the velocity vector at 
the edge of the boundary layer.   For convenience this expression may be rearranged in 
the following way - 
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("e/U^)^    .  d(^e/U.o) ^ ^^ 0.024 

Rcos^A (Qe/U„)'^   d(^/Co)       (cosg-singtane) 

Se (13) 

For typical aerofoil sections with streamwise incidences of less than 3° the chordwise 
velocity gradient is effectively constant in regions close to the attachment line.   In 
such situations the variation of K with x/co exhibits a maximum where 

K^ax  =  4-2     "^^'^   p-        -       tane 
4R ^"^ 

By noting that the minimum value of   B  is of order  -  20° and that for the turbulent 
attachment-line boundary layer the local skin friction coefficient is given  by 

C^r^  _  0.0689 'fe 
^0.42 

- see Poll^S^ the relaminarisation criterion .expressed in equation (12) becomes simply 

R < 265. 
This simplified analysis yields two important results.   Firstly, the conventional 

relaminarisation parameter, K, reaches its peak value very close to the attachment line. 
Therefore turbulence resulting from cross-flow instability is unlikely to be relaminar- 
ised.   Secondly, the relaminarisation criterion has been reduced to a critical value 
of the attachment-line similarity parameter R i.e. for relaminarisation R must be less 
than 265.   However, even in situations where gross contamination is present, the 
attachment-line cannot support bursts of turbulence until R exceeds 2M-5.   Therefore we 
conclude that turbulence resulting from either attachment-line contamination or cross- 
flow instability is unlikely to be relaminarised in the strong favourable pressure 
gradients which exist near the leading edge of a swept wing. 

b)   The effects of compressibility and heat transfer. 

In the case of attachment-line contamination the effects of compressibility were 
originally considered by Topham^S.   He concluded that for free-stream Mach numbers 
lying between 4 and 10 transition at the attachment-line began when R9AL exceeded 

37 approximately 130.   A later investigation conducted by Bushnell and Huffman   attempted 
to extend Topham's criterion to include the effects of heat transfer at the wall. 
However, they were forced to conclude that at transition onset the value of R8^j was 

not a constant.   Instead they observed that the critical value of Re/^T could lie anywhere 

between 100 and 300 depending upon the free-stream and wall conditions.   The available 
data base has been re-examined recently by Poll^O.   in this study only those cases in 
which transition was clearly the results of gross upstream contamination were considered. 
It was found that all the available data could be correlated by a single value of the 
compressible attachment-line similarity parameter, R, provided that the temperature 
dependent properties were evaluated at some intermediate, or reference, temperature 
i.e. the conditions necessary for the onset of transition are given by 

RA    =   rVe£_Co]i       =   245 

where  T*  =  Te  +  0.10  (Tw - Te )   +  0.60 (Tr - Te). 

(The reference temperature is the same as that determined by correlation of the 
turbulent attachment-line skin friction and heat transfer data - see reference 35.) 
In order to aid physical interpretation this criterion has been used to calculate the 
critical values of Rg as a function of the edge Mach number. Me, and wall-to-recovery 

temperature ratio, Tw/m  using the method described by Topham 36.   ^j^g results are 
presented in figjire 21.'''  It is apparent that there is a substantial edge Mach number 
dependence such that ReAT increases with increasing Me.   There is also a small increase 

in ReAj as the wall temperature is reduced.   Of particular interest is the tendency for 
the results at the higher edge Mach numbers that vary in such a way that 

Q_ ^^ constant 
Me 

This is the form of the boundary layer transition criteria which was employed in the 
design of the windward face thermal protection system for Space Shuttle - see for 
example Wurster'^^.   In the case of attachment-line contamination Re/Me lies in the range 
1+5 to 60 whereas for the windward plane of symmetry on the Space Shuttle Rg /Me has values 
of between 225 and 319.   This large difference is probably due to the fact that in the 
attachment-line case the boundary layer is tripped by large excresence whilst the values 
quoted by Wurster for the Space Shuttle refer to 'free transition'conditions. 
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The effects of compressibility and heat transfer on cross-flow instability have been 
studied experimentally by several groups e.g. Scott-Wilson and Capps^^, Dunning and 
Ulmann^O and_Jillie and Hopkins^l.   All observed the familiar streak pattern and 
characteristic 'sawtooth' transition fronts when surface exaporation, or sublimation, 
techniques were used.   However, in each case, the models used were representative of 
geometrically complex situations such as wing/body combinations", delta wings and half 
wings.   Consequently, there is little, or no, information concerning pressure 
distributions or boundary layer development near the swept leading edges.   This means 
that it has not been possible to extract useful quantitative data and these experiments 
can.only be used to provide qualitative evidence of transition via cross-flow instability 
in compressible flows.   It should be noted, however, that an attempt to quantify the 
effects of compressibility on cross-flow instability was made by Chapman^? in 1961. 
He applied the ideas of Owen and Raridall22,29 -|-o the results of the swept cylinder 
experiments of Beckwith and Gallagher'*3.   However, the transition phenomena reported 
by Beckwith and Gallagher'+3 are now known to be consistent with the process of attachment- 
line contamination - see Poll20,35.   Therefore Chapman's'+2 conclusions are of little 
value.   In addition to the experimental work there have also been some theoretical 
investigations of the effect of compressibility and heat transfer on cross-flow 
instability.   It appears that this problem was first considered by Brown'*'* who was able 
to show that for Maoh numbers less than 2 the critical values of x are almost independent 
of Mach number whilst cooling the wall raises the stability limit.   For an example of 
more recent theoretical work the reader is referred to Mack'+5. 

c)   Prediction of transition location in general three-dimensional flows. 

_When conditions are such that the transition to turbulence does not take place in 
the immediate vicinity of the attachment line the problem of predicting the movement 
of the transition front in response to changing free-stream conditions becomes 
particularly difficult.   For two-dimensional flows the state-of-the-art method for 
predicting transition is the 'eN" technique - see Jaffe, Okamura and Smith'*6.   This 
approach considers the spatial development of disturbancesof fixed frequency and 
transition is supposed to occur when the amplitude of any frequency just exceeds about 
22000 (^elO) times its amplitude at first instability.   Formal justification for 
this approach is not possible but it is clear that for reasonably accurate prediction 
the development of the actual disturbances must be in agreement with the predictions of 
linear_stability theory over the greater portion of the distance between onset of 
instability and breakdown to turbulent spots.   In recent years attempts have been made 
to extend the 'e^' method to the three-dimensional flow situation, notably by Cebeci 
and Stewartson^" and Neyfeh'*^.   As was the case with the work of Stuart23 attention 
has been focused upon the transition in the flow over the rotating disc.   Cebeci and 
Stewartson calculated growth rates for disturbances in the flow over the disc but found 
that at the experimentally observed transition location the amplification factor was 
5 X 108 , or about e20.   At the time this cast considerable doubt on the validity of the 
'e"'   method for general three-dimensional flows since the only justification for its 
use (is an engineering sense) lies in the fact that N should be approximately 10 in all 
cases.   This problem was subsequently resolved by Malik, Wilkinson and Orszag'*^.   They 
showed that the_wave-front curvature and Coriolis forces had a considerable stabilising 
effect on the disturbances and that when the corrected amplification rates were used the 
amplification factor was found to be 60,000, or ell, at the experimentally observed 
transition location.   In the work of Cebeci and Stewartson'*'^ the growth rates for the 
disturbances were obtained from solutions of the Orr-Sommerfeld equation i.e. the effects 
of curvature and_Coriolis coupling were ignored.   One may conclude that the 'eN' method 
appears to work in three-dimensional flows provided that the stability characteristics 
are generated by an appropriate.theoretical model.   In general the Orr-Sommerfeld 
equation will not produce accurate estimates of disturbance growth unless the effects of 
streamline curvature, body curvature and Coriolis forces are truely negligable.   Clearly 
this is not the case in the rotating disc flow and it is probably not the case for the 
swept cylinder results described in Part I.   However for certain aerofoil applications 
Orr-Sommerfeld plus e*-"' may produce results which are sufficiently accurate for 

engineering purposes - see for example Srokowski and OrszagSO and Hefner and Bushnell^l. 

Whilst the linear stability theory plus the eN transition criterion may represent 
a small^forward^step in the development of a satisfactory theory for boundary layer 
transition, it is already exceedingly expensive, in terms of the computer time, to 
obtain a prediction for transition position.   For example, if we let the time taken to 
perform a inviscid pressure distribution prediction for an aerofoil be 1 unit, then it 
takes an additional unit of computer time to calculate the mean boundary layer flow to 
the degree of accurancy necessary for stability purposes i.e. using a accurate finite 
difference code.   The transition prediction then takes typically 20 units if the 
appropriate stability characteristics can be obtained from the Orr-Sommerfeld equation 
and_perhaps as many as 100 units if the effects of curvature and Coriolis forces must 
be included.   By any standards the prediction of transition by this kind of method is 
both time consuming and, consequently, expensive.   There is, therefore, a continuing 
need for the development of simple techniques for the prediction of transition.   Some 
useful work has already been done in this important area.   For determining the 
conditions necessary for the onset of instability in three-dimensional flow the stability 
characteristics of pure cross-flow velocity profiles (figure 14) have been investigated 
and correlated against certain important features in the mean flow.   This was first 
attempted by Gregory (as reported in reference 52) who used the second derivative of the 
cross-flow velocity at the wall as the correlating parameter.   However, Poll9 
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subsequently showed that this correlation was unreliable and suggested that the height 
of the point of inflection above the surface might be more successful.   The proposed 
relation is shown in figure 22.   An alternative correlation based upon a cross-flow 
profile shape factor has been proposed by Dagenhart^S.   For the prediction of transition 
two simple methods have been proposed recently by Coustols^^.   The first represents an 
extension of the correlation XT 5 versus H,, shown in figure 20.   This is shown in figure 
23 where it should be noted that x has been replaced by the conventional cross-flow 
displacement thickness Reynolds number, R62, •   Whilst this represents a considerable 
improvement on the Owen and Randall "-x equal to constant" criterion it is evident that 
the data still exhibit a large amount of scatter.   In an attempt to further reduce 
this scatter Coustols has proposed a second correlation which is based upon three 
parameters.   This involves defining a new displacement thickness Reynolds number Rji, 
where <b  is the angle between the disturbance wave propagation direction and the pure 
cross-flow direction (e = [e-ir/2]   in figure 11) 

r« 
QgSin* U^ dz 

For a given location, linear stability theory is used to determine that value of 4 for 
which the ratio of the theoretical minimum critical Reynolds number R{^)crit. 
to the actual Reynolds number, R^^   exhibits a local minimum value,  't'Since this 
angle, *'mi-n. does not varv with frSe-stream unit Reynolds number the value of R^, ) 
may be obtained from the relation l)-*mxn 

'.] 
(14) 

i . ) = Constant 
*man 

The value of R necessary for transition at the fixed location is then determined by 
using equation (14) in conjunction with the correlation of R    ) versus 

H11 and turbulence level, Tu, shown in figure 24. 
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Figure 1.     Definition and notation for the infinite swept cylinder. 



5-16 

External streamline 
surface 

Cylinder 
surface 

Figure 2.    Flow near the leading edge of a swept cylinder. 

Figure 3.    Chordwise velocity profile in the immediate 
vicinity of the attachment line. 

Figure 4.    Spanwise velocity profile in the immediate 
vicinity of the attachment line. 
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a) Sweep = 63% Speed = 28 m/sec , No trip b) Sweep = 63% Speed = 2A m/sec , Trip = 0.34 mm 

c^ Sweep =63% Speeds 28m/sec , Trip = 0.34mm 

Figure 5.    Visualisation of the effect of transition via attachment-line contamination. 

Figure 6.    Hot-wire signals showing the disturbances which preceed a turbulent burst when 
R exceeds 570:-(a) R = 690 ,d/r, = 0,z/,j = 1.0,   (b) R = 590,d/^j^ 0.84,Z/TJ= 0.9 .    The horizontal 

scale = 1 m.sec/iarge division  and  the vertical scale = 0.02 volts/large division. 

400 r 

300 

200 

100 

Symbol Sweep Source 

7 64.5° Poll (ref. 11) 
o 68.0° " 
X 71.0° ./ 
D 45.0° Pfenninger(ref.12) 
0 33.0° Carlson (ref. 13) 

 Minimum critical  Ra 
-i 1 1 1 I I I   ■ ' 

6       8    10* 2 4 6       8    105 

Figure 7.   A comparison  between experimental 'free' transition results and a model 
based upon linear stability theory. 
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800 r 

600 

- Extrapolation  of data 

- Variation of R with d/jj for increasing 
speed when d and A are fixed. 

!(£ 

i,00 - 

200  - 

3! 4000 
2400 
1200 
800 
400 

Figure 8.     The variation of R with d/^ and s/q for the appearance of first bursts of turbulence. 

■nnnn 

■■■■■>■■■■ 
b) 

c) 

Figure 9.    Traces showing the development of the disturbance which preceeds a turbulent 
burst when  R lies  between 570 and AOO :- (a) R=/,65 ,d/j|:^i.i5 ,^ITI=^]930 ,Z/TJ =1.A , (b) R = A95, 

d/T^=1.23,s/rj= 2060, z/rj= 1.5 j (c) R = ^95 ,d/Tj = 1.23, s/T| = 2060, z/i| = 1.5.    In all cases the 
horizontal scale = 1 m sec/large division , in case (a) the vertical scale = 0.02 volts/targe division 

and   in cases (b) and (c) =0.1 volts/large division. 

260 

2A0 

IQ: 

200 

160 

120 
0.5 

- Results for 
large tripwires 

■ First bursts 

_l L_ 

Symbol Sweep 

X 

0 

D 

55° 
60° 
65° 

1.5 2.5 3.5 4.5 5.5 

S/TJ X 10"' 

Figure 10.    Transition characteristics for contamination by a flat-plate turbulent boundary layer. 
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Figure 11.   Co-ordinate system for investigating the stability of 
a three-dimensional boundary layer. 

Figure 12,     Variation of the velocity profile with the 
disturbance propagation angle. 

Figure 13.    China-clay visualisation of the transition on the forward face 
of a swept cylinder. (Poll^^) 
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X =   ^rnax ^O.OIC^^^ 

OOiCmax. 

Figure 1^.    Typical cross-flow velocity profile near the leading 
edge of a swept wing. 

QQO (33.5m/5ec) 

300 

200 

fOO 

0.1 

0     0 X 

Symbol Sweep 
0 

X 

0 

55° 
63" 
71° 

0.2 0.3 

Figure 15.    Examples of the streak patterns 
obtaind  by surface oil-flow visualisation. 

0.4 

Figure 16.     Variation of X with chordwise position and 
sweep angle for the first appearance of streaks in the oil flow. 
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€ = e   (A=70'') 

0.2A 0.28 O.AO 0.32 0.36 

X/Co 

Figure 17.    Orientation of the streaks relative to the 
normal-to-leoding edge co-ordinate direction,x. 

iiiikrrawiiiiivii 
VLHllinA^filllillKi^ 

X 

400r 

300 

200 

100 

Figure 18.     Traces showing the various stages of transition via cross-flow 
instability :- (a) disturbed laminar signal X = 257, (b) transitional X = 295, 
(c) fully turbulent X = 3A8 .   In each case z = 0.25 mm , horizontal scale = 

1m sec/large division   and vertical scale = 0.1 volts/large division - 

Symbol x/Co 
X 0.394 
o 0.372 
t> 0.350 
Q 0.328 
A 0.306 
• 0.284 
< 0.262 
0 0.241 
V 0.219 
o- 0.197 
+ 0.175 

Sweep = 70° — 

I 

Attachment line 
unstable to small 

disturbances 

Turbulent  bursts 
on attachment line 

160 180 200 260 280 220 2A0 

°2A.L. 

Figure 19.   Variation of X at transition with attachment-line momentum 
thickness Reynolds number and chordwise position. 
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3A0 

320 

c     300 

280 

260 

2A0 
2.3 

I = VU 

2A 2.5 2.6 2.7 

Figure 20.    Variation of the cross-flow Reynolds number at 
transition onset with streamwise shape factor. 

320 
/ 50 

Figure 21.   Conditions necessary for the onset of 
transition in terms of Rg, edge Mach number and 

wall-to-recovery temperature ratio. 
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Figure 22.    Variation of X crit. with the position of 
the inflection point.(Poll^) 
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Figure 23.      Proposed cross-flow transition criterion   R§ 

versus H„ (Coustols33) 
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Figure  lU.   Alternative cross-flow transition criterion proposed 
by Coustols". 
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NONLINEAR EFFECTS IN HYDRODYNAMIC STABILITY 

Thorwald Herbert 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 24061, U.S.A. 

SUMMARY 

The interest in the analysis of nonlinear effects is motivated by examples of insufficient agree- 
ment between observation and results of the linear theory for the prototypes of Taylor-Couette flow and 
plane Poiseuille flow. The principal methods for the analysis of nonlinear problems are characterized 
The weakly nonlinear theory for a single normal mode and the calculation and use of high-order Landau 
constants is discussed. A survey is given on weakly nonlinear models of observed phenomena. 

INTRODUCTION 

The discussion on nonlinear effects is as old as the stability theory itself. Reynolds [1] 
suggested in 1883 for laminar-turbulent transition in pipe flow "that the condition might be one of 
instability for disturbances of a certain magnitude and stable for smaller disturbances". Ever since 
nonlinear effects were employed as the prime candidate for explaining discrepancies between observation 
and the findings of the linear stability theory. This is often justified but not always. Beyond the 
neglect of nonlinear terms, the use of normal modes in all but one of the variables requires a simple 
basic flow, typically in an infinite pipe or between infinite plates or cylinders that are hardly 
realizable. Discrepancies may well be due to end effects, entrance effects, unsteadiness or stream- 
wise variation of the basic flow. Moreover, the results of the linear theory must always be seen in 
context with the background noise that is barely known in a specific experiment but provides the 
initial amplitudes for competing unstable modes in a band of wave numbers. On the other hand the need 
for considering nonlinear terms is often suggested by results of the linear theory itself! In the 
Rayleigh-Benard problem of convection in a horizontal fluid layer heated from below, the linear theory 
provides a critical Rayleigh number and wave number but leaves the form of the disturbances nonunique 
Instead of two-dimensional convection rolls, linear solutions with different orientation of the wave- 
number vector may be superposed to provide a variety of convection cells, e.g. hexagons. In any case 
the exponential growth of an unstable mode will not indefinitely continue. Nonlinear effects will come 
into play and modify the form of the disturbances as well as the growth rate. 

If nonlinearity acts stabilizing, an asymp- 
totic equilibrium amplitude may be reached and 
the basic state may be replaced by a new stable 
motion that reflects the spatial structure of 
the linear normal mode. Such secondary motions 
are observable over a long time and occur as 
convection roll.s or cells, [2, Figs. 140-142] in 
the Rayleigh-Benard problem or as Taylor vor- 
tices [2, Fig. 127] in the Couetfe flow between 
a fixed outer cylinder and a rotating inner 
cylinder. In all these figures, the relevant 
parameter (Rayleigh or Taylor number) exceeds 
the critical value and linear theory predicts 
instability in a broad band of wavenumbers (see 
Fig. 1 for a schematic stability diagram). One 
might well ask what happened to the other modes 
and what selected the observed wavelength? 
Obviously, with the given initial conditions 
(noise), some nonlinear mechanism preferred the 
observed mode and suppressed the others. As the 
relevant parameter is further increased, the 
steady secondary motion may itself become 
unstable.  In thermal convection, the phenomena 

neutral 
curve, ao=0 

critical point 

stable domain, ao < 0 

JL: 
wavenumber a 

Figure  1.    Schematic stability diagram. 

th! lr.Ll^        t °"^^ '^"^ ^° ^^^ different types of secondary motion but also by the dependence on 
the Prandtl number as a second parameter of this problem. The review by Busse [3] and his contribution 
to [4] are recommended for detailed information. In the Taylor-Couette flow the secondary instability 
leads to wavy Taylor vortices as shown in [2, Fig. 128]. The waves travel around the circumference and 
the new, tertiary motion can be characterized by the axial and azimuthal wavenumber. These tertiary 
motions sensitively depend on the history of the flow. Coles [5] produced as many as 25 different 
motions at the same Taylor number showing that preference for every single one is only marginal As 
the Taylor number is varied, transitions from one state to another occur. It was earlier thought that 
these wavy vortices are the ultimate laminar motion before breakdown into turbulence. High-resolution 
power spectra of the time-dependent flow have shown, however, that the wavy vortices with only one 
characteristic frequency evolve into a quasi-periodic motion with two incommensurate frequencies 
before broadening of the spectrum occurs at even higher Taylor numbers. The broadening of the spectru^ 

2 ,L A/l ''^^Tf °P^^"^°"^J definition for the occurrence of turbulence. The turbulent motion 

to^h^-amina^Tfylt vortices''   ''"•   '°''''''°'''  ''''''°'- ^^^   ^  superposed  regular structure  similar 
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The experiments on the Taylor-Couette problem provide a particularly clear picture of the discrete 
steps in the transition to turbulence, and challenge theoretical explanation. Obviously, our descrip- 
tion is incomplete and more detail can be found in the articles by DiPrima [6] and DiPrima and Swinney 
in [4]. More recent work is summarized in [7]. 

A completely different and rather sketchy picture of the nonlinear phenomena emerges from those 
cases where nonlinearity tends to enhance the growth predicted by the linear theory. No clue can be 
found for unstable disturbances. In the linearly stable region, however, weak decay of normal modes 
may be counterbalanced or outweighed by nonlinear destabi1ization in the presence of a finite-amplitude 
disturbance background. This nonlinear instability is held responsible for the occurrence of transi- 
tion in plane Poiseuille flow at Reynolds numbers far below the critical value. If secondary motions 
exist in the stable domain, they must be unstable. No experimental evidence has been found for any 
stable secondary motion different from turbulent flow. It seems therefore that turbulence directly 
develops from linear or nonlinear instability at fixed Reynolds.number. This evolution is radically 
different from the discrete steps of transition in the Rayleigh-Benard or Taylor-Couette problem. 

Nonlinear instability must also be employed for explaining the origin of turbulence in the Hagen- 
Poiseuille flow in a circular pipe and in plane Couette flow. Both these flows are stable for all 
Reynolds numbers according to linear stability theory. After 100 years of stability research, it is 
embarrassing to realize that little can be added to Reynold's suggestion (see above). This extreme 
example of pipe flow, however, shows the enormous difficulty of solving nonlinear stability problems 
and gives appreciation for the progress achieved in other fields. 

This progress is due to a combination of experimental, analytical, numerical, and mathematical 
work. Development of a multitude of methods and application to the variety of nonlinear phenomena has 
produced an enormous body of scientific results that are scattered over the literature. Some basic 
concepts and results are discussed in the monograph [8] and with more emphasis on the mathematical 
bifurcation theory in [9,10]. The collection [4] of interdisciplinary contributions provides an 
excellent overview and up-to-date references. Complementary information on transition in shear flows 
is given in [11]. 

In the following, we briefly characterize the methods of approaching nonlinear problems: weakly 
nonlinear theory, computer simulation, bifurcation theory, and dynamical systems theory. The weakly 
nonlinear theory for extending the results of the linear theory for single modes is discussed in 
section 3. Models of weakly nonlinear interactions of modes are reviewed in section 4. The Taylor- 
Couette fl^ow and plane Poiseuille flow are used as prototypes, with occasional reference to the 
Raylei gh-Benard problem. 

2. ANALYSIS OF NONLINEAR PROBLEMS 

In view of the difficulties posed by the nonlinearity itself, it seems natural to avoid any 
additional complications of the problem. Therefore, the most powerful methods exist for the simplest 
problems: the temporal development of the motion in infinite geometry. Little can yet be done for the 
spatially developing boundary layers or mixing layers. 

Historically, the "weakly nonlinear theory" of stability developed first. This theory is in fact 
a standard perturbation method [12] using expansions about the solution of the linear problem. Pertur- 
bation methods represent the solution f = £{^,e) of a nonlinear problem by an expansion 

Kx.O = i  f (x)^"" = fo(x) + £fi(x) + .... (1) 
m=0 

in terms of some parameter (or variable) e that appears naturally or artificially in the problem. 
After finding the solution fo(x) of the equations for e=0, the functions f^(^) are usually governed 
by a sequence of linear e'quations which can be solved sequentially. Normally, the series (1) is 
truncated after the first nonzero correction. This may provide valuable results on tendencies of the 
solution such as the gradient 3f/3e close to e=0 or on the solution for some range of E. However, the 
validity of the results at finite values of e can only be assessed with information on the convergence 
of the series (1). This information can be obtained by calculating higher-order terms in e and apply- 
ing techniques for the analysis and improvement of perturbation series [13]. 

In the weakly nonlinear stability theory, the (equilibrium or time-dependent) amplitude of a 
normal mode is used as expansion parameters while fo is the solution of the linear problem. 
Expansions in the equilibrium amplitude, e=Ag, are especially suited for obtaining the asymptotic 
secondary motions in the neighborhood of neutral solutions fo. Expansions in the time-dependent 
amplitude, E=A(t), provide as part of the solution a nonlinear ordinary differential equation ("Landau 
equation") for A(t), typically of the form 

^ = aoA + aiA3 + azA^ + ... ■ (2) 

with numerical coefficients ("Landau constants"). This equation yields the nonlinear growth of an 
unstable disturbance as well as the equilibrium amplitude Ag for dA^/dt = 0. A detailed discussion of 
various methods, references, and improvements for expansions in A(t) are given in [14], 

The theory can also be applied for studying the secondary instability and nonlinear interaction of 
normal modes.  In the latter case, expansions in time-dependent amplitudes provide coupled systems of 
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amplitude equations in just the form studied by mathematical theories. It is this link that makes the 
weakly nonlinear theory a particularly attractive tool. The selection of normal modes for the composi- 
tion of relevant weakly nonlinear models, however, requires guidance by known results (e.g. observa- 
tion) or physical intuition. In this sense, the weakly nonlinear theory cannot be considered a system- 
atic method for analyzing nonlinear phenomena. 

Except in rare cases [15], the solutions fo of the linear problem and the nonlinear contribu- 
tions l^ in (1) can only be found numerically. One might therefore consider solving the whole problem 
by means of numerical methods. The analysis of secondary motions can be reduced to solving a nonlinear 
eigenvalue problem for the coefficients (functions) in a truncated Fourier expansion of the motion. 
The analysis of nonlinear growth and equilibration rests on an initial-value problem for a similar 
system of nonlinear equations. For some time, this approach was hampered by insufficient quality of 
the numerical methods. Especially when solving partial differential equations, effects of artificial 
(numerical) viscosity or phase errors in finite-difference methods may falsify the results even when 
sufficient resolution can be maintained. The use of improved finite-difference schemes, and in par- 
ticular the application of spectral methods [16] made the computational approach a reliable tool for 
analyzing certain nonlinear phenomena without resort to prior modeling. 

The solution of nonlinear eigenvalue problems for ordinary differential equations takes profit 
from the high resolution of spectral expansions with relatively few coefficients. These coefficients 
are governed by nonlinear algebraic equations that can be solved by standard iteration techniques (e.g. 
Newton's method in combination with an arc-length continuation method). Using these techniques, 
accurate solutions were obtained for finite-amplitude convection rolls [17], Taylor vortices [18] and 
secondary motions in plane Poiseuille flow [19]. Similar computations using finite-difference methods 
are reported in [20,21]. The nonlinear eigenvalue problem provides the secondary motion disregarding 
the stability or instability of the solution. The secondary motions provide a basis for the subsequent 
analysis of secondary instability [17,18,22]. 

Computational methods for the initial value problem seek in general for the solution of the full 
equations of motion in a finite size box limited by the physical walls in one direction. Periodicity 
of the solution is assumed in the variables parallel to the wall. Fourier expansions in these 
variables can be seen as a concept of the spectral method or as a nonlinear extension of the normal- 
mode concept. Obviously, the solution depends not only on the initial conditions but also on the size 
of the box. Since the computations (especially in three dimensions) are rather demanding, the box is 
usually chosen according to the wavelength of the normal mode under consideration. This prevents from 
the analysis of phenomena with scales larger than this wavelength, such as the occurrence of period- 
doubling or the nonlinear selection of the wavelength, e.g. of the Taylor vortices in [2, Fig. 127]. 
The use of a larger computational box, however, is only a matter of computer time and storage. 

Numerous solutions of essentially two-dimensional problems have been reported. Numerical simula- 
tions in three dimensions - some of them with finite-difference methods - have been carried out for 
thermal convection [23], plane Poiseuille flow [24-26], and for the Taylor problem by Marcus and Moser, 
see [7]. To some extent, the results are like experimental data, but more quantities are recorded 
simultaneously at many points in space. The value of the numerical simulation depends largely on the 
post-processing of the raw data. The problem of retrieving from the overwhelming mass of data the 
essence of the mechanisms at work and an intelligible set of quantitative information is not a trivial 
task. 

As expected from observations, simulations of convection flows or flows between rotating cylinders 
provide at fixed R the asymptotic equilibrium solution. Repeated runs are necessary in order to cover 
the different flow regimes at increasing values of R. In contrast, a single run for Poiseuille flow 
comprises all the stages of transition to turbulence at fixed R. After a finite time, the solution 
breaks down due to insufficient resolution for the fine scales that arise with the broadening of the 
spectrum. Computer experiments on Poiseuille flow are very valuable for bridging the gap between the 
temporal growth concept of the theory and the spatial development of disturbances in shear-flow experi- 
ments. The simulation of the spatial development is still hampered by the problem of formulating 
transparent boundary conditions at the exit of the computational box. 

A third group of methods for the analysis of nonlinear phenomena is of a predominantly mathe- 
matical nature. The goal of these methods is obviously not the construction of solutions for the 
comparison with experiments, but increasing the insight into general properties of nonlinear systems 
and a classification of common patterns of solutions. Often, these methods use simple model equations 
that show properties similar to hydrodynamic systems, and even these simple equations usually must be 
solved numerically. The technical terms are sometimes difficult to comprehend for the non-mathemati- 
cian and the relation between turbulence and the chaotic "strange attractor" is still a matter of con- 
troversial discussion [27]. The mathematical theories, however, have not only contributed the con- 
ceptual framework for a new generation of experiments, straightened out and enriched the terminology, 
but also revised various misconceptions of the behavior of deterministic nonlinear systems. 

Stability analysis is, in other words, the struggle with the nonuniqueness of the solutions of 
nonlinear equations. How many solutions exist, which ones are stable, how are they connected as the 
parameter R varies? The bifurcation theory aims at answering these questions for abstract evolution 
equations of the form 

du 

d?=£(ii'«) (3) 

where R is a parameter, F some nonlinear function, and u a vector field. The Navier-Stokes equations 
can be projected into this form and u is considered th'e difference between the actual motion and the 
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basic flow which exists for all R. Typically, a first theorem states that usO is the only solution 
for sufficiently small R>0. Consequently, nonuniqueness of the solution at higher values of R must 
originate from the splitting, or bifurcation of solutions. These bifurcations can be studied using the 
simpler scalar problem 

f =F(A.R) (4) 

Figure 2. Schematic bifurcation diagrams. 

where A=A(t) can be interpreted as the 
amplitude of u. The classification of 
bifurcations aTid stable branches rests on 
the steady (or equilibrium) solutions of 
(4). The results can be given in the form 
of definitions and theorems but also as 
bifurcation diagrams. A small collection 
of such diagrams for the first bifurcation 
is shown in Fig. 2. Solid and dashed lines 
represent branches with stable and unstable 
solutions, respectively. The relation 
between stability diagram and bifurcation 
diagram is as follows: we extend the neu- 
tral curve (for A+0) in Fig. 1 into a 
"neutral surface" in the third dimension, 
amplitude A, and cut this surface at a 
fixed wavenumber OQ. The associated 
point RQ of the neutral curve is the bifur- 
cation point; ao is absorbed into the 
function F in (4). The case of "bifurca- 
tion to the right", or supercritical sta- 
bility in Fig. 2a is obviously related to 
the observations in the Taylor-Couette 
problem: Couette flow is stable up to RQ 
where stability is exchanged with Taylor 
vortices of amplitude A (the distinction 
between +A is redundant). For small A, the 
case of subcritical instability in Fig. 2b 
is characteristic for plane Poiseuille 
flow. The turning points into stable, large-amplitude motions (turbulent?) result from the uniqueness 
of the basie flow at low R. A tentative picture for pipe flow is given in Fig. 2c with a bifurcation 
point at infinity [28]. Note that the amplitude equation (2) has the form of equation (4) since the 
Landau constants depend on R. With the approximations ao ~ (R-RQ). ^i " const, in the neighborhood 
of RQ, we obtain at lowest order for the steady solution A^ - [- (R-R )/a ]l/2 which qualitatively 
agrees with Fig. 2a and 2b for ai<0 and ai>0, respectively. Fig. 2d is for an amplitude equation of 
the type dA/dt = agA + a^A^ + 3.2!^^, with an unusual quadratic term. Fig. 2e shows a bifurcation 
similar to Fig. 2a in the presence of an imperfection, dA/dt = aoA + ajA^ + c. This equation holds for 
the Taylor-Couette problem in finite-length cylinders [29] with c proportional to the ratio of gap 
width to cylinder length. Note that this realistic situation exhibits no bifurcation point. The 
abnormal solution (A<0) has been experimentally verified [30]. 

For stable branches, repeated bifurcation of the various types may occur at larger values of R. 
In mathematical terms, bifurcation is associated with the breaking of symmetries, i.e. with the depen- 
dence of the new solution on additional variables or the loss of regular properties such as simple 
periodicity. The question then arises how many steps (bifurcations) are necessary to convert the basic 
flow into the chaotic, turbulent motion. The early model of Landau [31] predicted an infinite number 
of steps that lead to a discrete spectrum with an enumerable set of lines. Fortunately, Landau's model 
seems not to be relevant to hydrodynamic systems. (Otherwise, any attempt to model this cascade would 
be condemned to fail.) Ruelle & Takens [32] showed that the cascade leads after a small number of 
bifurcations to nonperiodic, chaotic behavior of the solutions. In fact, these solutions with a 
continuous broad-band spectrum are less ordered or regular than Landau's model flows. Support to this 
more tractable cascade towards chaos was given by Ruelle's concept of "sensitivity to initial condi- 
tions" [33] that shed new light on deterministic systems. According to this concept, the nonrepeatable 
nature of solutions typical for turbulent motions can be understood without resorting to statistical 
methods. 

Important contributions in this field were provided by the qualitative theory of ordinary dif- 
ferential equations, or dynamical systems theory. Simple systems with > 3 degrees of freedom show a 
variety of solutions with properties corresponding to the observations in thermal convection or in the 
flow between concentric cylinders. The Lorenz equations [34] are meanwhile a classical example (see 
also Yorke & Yorke in [4]): 

dx _ 
dt = -ox + oy. 

dt -xz + rx - y, (5) 

dz 
dt 

xy - bz. 
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Depending on the values of the parameters a, r and b, this system exhibits a basic state (x=y=z=0), 
steady solutions, time-periodic and nonperiodic solutions. When solving equations (5) numerically, 
extreme care is required due to the sensitivity of the solution to round-off and truncation errors. 
Solutions that start very close to each other may be far apart at later times. More detail about the 
Lorenz system and similar systems as well as graphs of spectra and "strange attractors" can be found in 
[35]. 

The interest in systems as "simple" as (5) is not surprising; such systems can be considered as 
coupled amplitude equations as they are obtained from weakly nonlinear models. In fact, the Lorenz 
equations represent a model for a convection problem (see Yorke & Yorke [4]) and Busse [36] found 
another interesting system that describes his observations on weakly turbulent convection in a rotating 
fluid layer. However, for those working with shear flows, the chaotic motion lacks the violence of the 
observed turbulent motions, and some important ingredient seems to be missing in the nonlinear systems 
currently studied. The trajectories of the solutions in the phase space are too smooth for the strange 
attractor to be a generally accepted model of shear flow turbulence. 

3. WEAKLY NONLINEAR ANALYSIS OF A SINGLE MODE 

In view of the important role of systems of amplitude equations in the analysis of nonlinear 
effects, it is surprising to find rather few thorough investigations. Often, only asymptotic estimates 
of the Landau coefficients are given. Usually the equations are truncated at the lowest possible 
order. Obviously, the formulation of higher-order terms for solutions of the Navier-Stokes equations 
can be very tedious when done by hand. However, this work can be delegated to the computer. 
Simultaneously, the computer program generates the formal expansion, collects the terms that appear in 
the equations, and finally solves these equations. Once this program is written, it can be easily 
adapted to other flows, other equations with quadratic nonlinearity, other expansion parameters, or 
extended for the analysis of secondary instability or the interaction of modes. 

As an example, we consider the nonlinear growth of a two-dimensional T-S wave in plane Poiseuille 
flow. The disturbance can be written in terms of a single scalar streamfunction i|<. This case also 
shows the nonlinear effect on the phase velocity that is missing in the Taylor-Couette problem. We 
expand in the amplitude A{t) in a similar way as Stuart [36] and Watson [37]. However, the formulation 
given here [14] avoids the nonuniqueness that appeared in Watson's method and is not restricted to the 
neighborhood of the neutral curve. 

With x in the streamwise direction and the channel walls at y=+l, the linear theory provides 
normal modes in the form 

Mx.y,t) =e^«Sio(y)e^^" ■"«''. (6) 

where a is the wavenumber, ao the amplification rate and UQ the frequency. For given values of R 
and a, XQ = ao - ioiQ is the principal eigenvalue of the Orr-Sommerfeld problem and (|)io(y) the related 
eigenfunction. If nonlinear terms are taken into account, the disturbance reacts with itself, with its 
complex conjugate, and with the mean flow - which results in the generation of harmonics, a mean-flow 
distortion, and a distortion of the fundamental, respectively. Moreover, the frequency and 
amplification rate will change with the finite size of the disturbance. Therefore it seems natural to 
represent the nonlinear disturbance as the Fourier series 

't'Cx.y.t) =   I     *^(y,t)e'"^ e = ax - Y(t). (7) 

With real Y(t) any growth of the disturbance is absorbed into the Fourier coefficients ii . For a real 
solution, we must satisfy \\i_^=ii'^, where t denotes the complex conjugate. We define the (real) 
amplitude by 

A(t) = |4-i(0,t)| (8) 

A straightforward expansion procedure [14] then provides 

f^l^.t) = Al"l<t,^(y,t), (9) 

<t'n(y.t) = I    *npi(y)A "'.  <(.oo=0, (10) 
m=0 

9 
x=yxA,x=a-ia). fill 

ni=o ">      m   m   m '''■'■> 
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where 

^=-^-i^ ■ (12) 
j, dA 
A dt       ■  dt 

The Xjj, and <i>^^    for n,m > 0 are governed by the equations 

{L„ -  (2mao  + nXo)D„} ((>„„ = g„„ + f„„ (13) n "'  n    ^nm      'nra        nm *    ' 

where 

L^=^D^-ina(UD^-U").    D^=d!^-n^a^ (14) 

9,, =  ^I^  (2^a^^-nX^)D^*^^                       ' (15) 

f      = ia    y     (k*'     - V*      4-)  D|<l>i ». {16) 
nm            (2)        ^^            "^    -^ 

U=U(y)   is  the  basic   flow  and  the  prime  denotes   d/dy.     The  summations  will   be  defined   shortly.     The 
boundary conditions are 

(|)'     = (j>"    = ((>'     = (t>      =0,      n > 0      at y = +1 (17) 
*om     '^om     ^nm     ^nm        '                            •'       - ^    ' 

The conditions on ^"    originate from the assumption of a fixed mean-pressure gradient.  The (^^^    are 
determined to within an arbitrary constant, as usual for the streamfunction. For the fundamental, we 
obtain with (8) the additional conditions 

<fio(0) = 1,  4.1^(0) = 0,  m > 0. (18) 

The ordinary differential equations can be solved in the sequence of ascending order in A of the 
terms. The solution proceeds line by line from left to right in Table 1. 

P40 
'I'SO 

Table 1. 

At any order, summation (1) collects the terms containing the Landau constants X , p^O that appear up 
to and including this order such that y + £ = m. Summation (2) collects all the terms containing 
lower-order functions ((> , <t>y (^'t'-y y^ ^^^'^ ^^^^ v + k = n, p + i = m. At first order, both 
summations are empty, aiVd (13) - (17)'reduce to the homogeneous Orr-Sommerfeld problem for XQ , i|)io 
subject to the normalization (18). We assume that a boundary-value method is available (e.g. spectral 
collocation with Chebyshev polynomials) for converting the Orr-Sommerfeld problem into an algebraic 
eigenvalue problem. With an initial guess forXg, we find XQ , ifiio by using standard iterative 
procedures. At order A^, summation (1) is still empty, but summation (2) provides inhomogeneous 
terms, (foi and ^zu are obtained by solving inhomogeneous algebraic systems. At order A^ , summation 
(2) provides fu and summation (1) contains the yet unknown Xi multiplied with a known function. We 
augment the algebraic system in a similar way as for the linear problem with XQ , (()io: introduce an 
extra column for the unknown Xj and an extra row in order to satisfy (18). Solving the augmented 
inhomogeneous system is straightforward. No adjoint function is needed nor is any distinction to be 
made between the different definitions of the Landau constant [14]. At this level we have already 
exceeded (by solving for ())ii) the usual level of approximation. However, completing the line 
with (|)3o and continuing to higher order is bare routine. The only new step comes with the equation 
for (|>i2: the part of gi2 that depends only on the lower-order Landau constants is added to fi2 on 
the right-hand side. In a modular program, the now existing modules can be cyclically called over and 
over up to arbitrary order. Apart from computer time and storage, the change from the lowest 
truncation to the high-order approach requires little extra effort. Based on the principle that 
higher-order terms arise from products of lower-order terms, the summations (1) and (2) can be 
automatically performed using tables of the already available parts of the solution. As a rule of 
thumb, solving up to X2, <t>i2 requires twice the computer time for solving the linear problem. Our 
program consists of about 250 Fortran statements, including input/output, eigenvalue search, and a 
special   routine for solving algebraic systems. 

-l-o i>i ^2 *3 

A Xo.if'lO 
A2 ♦01 4'20 
A3 ^1 .<t>ll ♦ so 
A"* ^02 ■(■Zl 
A5 X2,<|>12 4131 
•   •   • 
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The question on the validity arises in two respects: for the solution and for the expansion 
procedure itself. Obviously, the solution in form of the series (10) - (11) converges only for 
sufficiently small values of A^. The radius p of convergence in the complex plane is limited by the 
singularity nearest to the origin. If the amplitudes of physical interest are inside this 
radius, A2<p, the series provides a valid approximation. If the nearest singularity appears on the 
positive real axis, it may have physical meaning and requires further consideration. Often, however, 
the singularity is located somewhere in the complex plane or on the negative real axis and has no 
physical meaning since A^>0 and real. These nonphysical singularities can restrict p to very small 
values and in fact to p=0. Outside this small radius, the series produces useless results no matter 
how many terms are taken into account. Nevertheless, the information concealed in the higher-order 
terms can be profitable. Techniques are available [13] for estimating the radius of convergence, for 
studying the location and nature of the nearest singularity, and for recasting the series in a more 
suitable form. 

Invalidity of the expansion procedure is indicated by resonance in the equations (13) 
for (|>^j^, n*l. Resonance occurs whenever 2mao + n^o coincides with an eigenvalue of the homogeneous 
problem for cj)^^, n*l. In this case the inhomogeneous problem cannot be solved, except if an 
orthogonality condition can be satisfied by varying a free Landau constant. Such constants are not 
available for n^l. A serious case of invalidity occurs when expansions in A(t) are used in the stable 
domain, ao<0, due to resonance for n=0 [14]. For ao>0, resonance with unstable harmonics, n>l, can 
sometimes occur. This case is of physical interest and can be analyzed by using a model with two (or 
more) interacting modes. 

The main result of the weakly nonlinear analysis based on A(t) is the series (11) with known 
numerical coefficients X^. According to (12), the real part provides the amplitude equation (2) while 
the imaginary part describes the nonlinear changes of the frequency. The amplitude A of the 
equilibrium states which may asymptotically evolve from a growing mode can be found from (2) by letting 
dA/dt = 0, if A|<p. The expansion in A(t) is for fixed R, a and provides only the values of A at 
this point. If the analysis aims only at the equilibrium states, an expansion in powers of A can be 
used. The formalism is very similar to that given above. Insteady of the series for dA/dt (=0), a 
series R = RQ + R,'\| + ••• is obtained, where RQ, a is a point on the neutral curve. This series 
directly describes the branches of the bifurcation diagram as long as A2<p. 

A survey of applications to our prototype flows and references are given in [14], A study on 
Poiseuille flow with emphasis on the convergence problem appeared recently [38]. The results verify 
the subcritical instability of plane Poiseuille flow and the supercritical stability of convection 
cells and Taylor vortices in the neighborhood of the critical point. Results from higher 
approximations often agree with computational results for a considerable range of amplitudes. However, 
ongoing work [39] on expansions for equilibrium states in the Poiseuille flow has also shown that the 
radius of convergence can indeed be zero. 

4. WEAKLY NONLINEAR MODELS 

For a given flow and a supercritical value of R, the linear theory often predicts instability or 
very weak stability for many different normal modes. Weakly nonlinear models are formed by superposing 
different modes for the purpose of deriving amplitude equations and finding simple mechanisms of 
observed phenomena. Any number of such models can be constructed by choosing members from the pool of 
normal modes and ordering their amplitudes. In the following, we discuss a selection of well 
established models, noting that in some cases the final proof of relevance is still missing. 

In the Taylor-Couette problem, the existence of finite-amplitude Taylor vortices for R slightly 
above the critical value R^, can be established for single modes in a band of wavenumbers. However, the 
observed vortices [4, Fig. 6.5, p. 155] have wavenumbers very close to the critical value a^.. An 
explanation could arise from the model of side-band instability: a finite amplitude Taylor vortex of 
amplitude Ag and wavenumber a could be unstable with respect to disturbances of wavenumbers a + Aa, 
a - Aa and small (background noise) amplitudes B, C, respectively, where B, C << A . At lowest order, 
B and C are governed by the amplitude equations 

^ = boB + (biB + b2C)A|, ^ = CQC + (ciC + C2B)A| (19) 

where bo, co are the linear growth rates and A| = -i^/i^ from eq. (2). Estimates in the neighborhood 
of the critical  point  provide bi  «  ci »  2ai,      T)^ ■=  ca =  ai     and therefore 

^=  (bo  - 2ao)B - aoC,    ^C. „  (^^  . 2ao )C - aoB (20) 

Considering the constant coefficients, the solution can be sought in the form B, C - e'^^. With a 
parabolic approximation for the growth rate as a function of a, one finds instability of the Taylor 
vortex, X > 0, outside a band [l/dy'^ times the unstable band predicted by the linear theory 
centered at a^,. The band width for stable Taylor vortices shrinks if a more accurate approximation 
(5th order terms in (2)) for the Taylor vortices is used [40], but there still remains a significant 
difference between theoretical and experimental results. 

In a more general framework [41], the side-band instability was studied using the nonlinear 
Schrodinger equation 
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1^- b0= aoA + ai|A|2A (21) 

where z is the coordinate of spatial periodicity (axial in the Taylor-Couette problem). This equation 
for the complex amplitude A(z,t) governs the weakly nonlinar development of a wave packet in the 
neighborhood of the critical point. This study established the relation between side-band instability 
and the Benjamin-Feir instability of water waves and extended the theory for wave disturbances which 
are associated with complex eigenvalues. A survey on applications of (21) to hydrodynamic stability 
problems is given in  [42], 

Once the existence of finite-amplitude Taylor vortices with a°ap is established, the onset and 
formation of wavy vortices can be studied. Especially attractive is the case of small gap width, where 
waviness appears at rather small amplitude of the Taylor vortices. The physical model seems obvious 
since the linear theory predicts instability of the Couette flow with respect to nonaxisymmetric modes 
at supercritical values of R. These modes can be characterized by the number m of azimuthal waves, 
with m=0 for Taylor vortices. The model currently in use studies the interaction of six modes, and 
accordingly, the amplitude equations are somewhat lengthy. Some equations and the main results are 
given in [6]. The model predicts the onset and characteristics (e.g. the torque) of wavy vortices for 
given m in reasonable agreement with experimental and computational results. However, a new selection 
problem arises since wavy vortices with different may occur as R increases. Our preliminary results 
have shown that the instability of a wavy vortex with ai, mi with respect to another wavy vortex 
with ai, m2 can' be studied with an extended model. The increasing complexity of the amplitude 
equations poses no problem if these equations are generated by a computer program. The dramatic 
increase in the number of terms,  however,  restricts the analysis to relatively low order. 

Attempts have also been made [43] to derive the quasi-periodic and chaotic motion between rotating 
cylinders from large systems of amplitude equations for a finite number of Fourier components in the 
axial and azimuthal direction. Although some aspects of the observations are reproduced, the model has 
not given a quantitative description of the flow phenomena. 

For shear flows, weakly nonlinear models were primarily developed in order to explain the spanwise 
periodic, three-dimensional phenomena in the transition region of boundary layers. Little experimental 
guidance has been available on the choice of modes. A discussion of the principal models is given in 
[44] which is here complemented by recent results. For a shorter notation, we denote the modes 
by A{a,B}, where A is the complex amplitude and a,e are the streamwise and spanwise wavenumber, 
respectively. We also understand that the complex conjugate mode is included when necessary, as well 
as the mode A{a,-e}       for 3*0.      All  modes  are principal   modes of the Orr-Sommerfeld problem. 

The Benney-Lin model considers the interaction between a two-dimensional wave A{a,0} and an 
oblique wave B{a,g}    with arbitrary 3.    This model yields the amplitude equations 

^= A(ao  + ailAl2  + a2|B|2) + ^^^^^\      ^= B(bo  + bi|B|2  + b2|A|2) + bsA^B^, (22) 

In the light of resonant wave interactions, the case of synchronization between the waves is of 
special interest. The linear theory predicts phase velocities of the waves which typically differ by 
15%. Itoh [45] has shown that nonlinear synchronization can occur at reasonable finite amplitudes. 
However, the results are not fully conclusive regarding the relevance of this model in plane Poiseuille 
flow. Results for the boundary layer [46] seem to support the Benney-Lin mechanism. The analysis of 
the secondary instability based on a Floquet system [47], however, has clearly revealed that the 
principal mode of three-dimensional instability in Poiseuille flow does not originate from the Benney- 
Lin mechanism. 

The Craik model of a resonant triad between A{a,0} and a subharmonic mode B{a/2, B) leads to two 
equations with a second-order interaction, 

^= aoA + aiB2,    ^ = boB + b^AB^ (23) 

Resonance or synchronization between the waves can occur at the linear level for a specific 
wavenumber B=e*. In Poiseuille flow, this mechanism is inactive by reasons of symmetry. Subharmonic 
three-dimensional instability in Poiseuille flow [22] originates from a near-resonant triad 
between A{a,0} and eigensolutions of the Squire equation for the vorticity component normal to the 
wall. In the boundary layer, this mechanism acts in cooperation with Craik's mechanism [48]. In other 
words, Craik's model   is  relevant but incomplete. 

A similar statement holds for the model [44] of a parametrical excitation of streamwise 
vortices B{0,e}    by two-dimensional waves.    For B<<A this provides an amplitude equation 

^= B(bo  + bi|A|2) (24) 

and the weak decay bo  can be outweighed if bi > 0.  The results for the threshold amplitude |A^| 
= {-^al^i)'        given in [44] reveal the pitfalls of the weakly nonlinear modeling.  Independent 
analysis of the parametrical secondary instability [47] shows that these threshold amplitudes are a 
reasonable approximation only for 6"1.  At lower B,  the results suffer from the low order of 
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truncation.  At larger B,  the use of (24) fails to provide low threshold amplitudes since a second 
spanwise periodic mode is important for the instability mechanism but is not included in the model. 

The analysis of the three-dimensional phenomena in shear flows as an instability of a streamwise 
periodic flow will be discussed in the next lecture. This analysis provides for the first time a 
catalogue of the normal modes which are crucial for the various types of resonant wave interaction in 
shear flows. This catalogue can be utilized for constructing improved weakly nonlinear models. 
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^    SUMMARY 

A survey is given on the appearance of secondary instability in shear flows. The mixing layer, 
the flat-plate boundary layer, and plane Poiseuille flow are considered as prototype flows. The compu- 
tational and analytical work which produced conceptual enlightenment is discussed. A theory of second- 
ary instability is presented: the (almost) periodic flow that develops in the presence of finite- 
amplitude traveling waves is used as a basic flow for a linear stability analysis with respect to span- 
wise periodic, three-dimensional disturbances. The Hill-type stability equations with periodic coeffi- 
cients allow for various classes of normal modes that are associated with different types of reso- 
nance. A numerical method for solving the secondary stability problem is discussed. Results for 
fundamental and subharmonic modes in plane Poiseuille flow are reviewed briefly. The present scope of 
the theory and its potential   for future extensions are discussed. 

1. INTRODUCTION 

One of the most challenging objectives of the nonlinear stability theory is ultimately the under- 
standing, prediction, and control of transition in shear flows such as duct flows, boundary layers, 
mixing layers, jets, and wakes. Over the past decades, considerable progress has been achieved in 
developing a consistent picture of transition in Rayleigh-Benard convection [1], Tayl or-Couette flow 
[2], and similar problems. This success was due to the combination of new observations, numerical, and 
analytical results as well as mathematical concepts. In shear flows, however, a rather incomplete 
picture evolved primarily from experimental evidence [3] while theoretical support has been widely 
lacking. The key experiments, especially in boundary layers and Poiseuille flow, are intrinsically 
difficult to conduct. The phenomena run away in space since they sensitively depend on the ever-chang- 
ing, unmeasurable details of the upstream flow conditions. Often, certain stages of the transition 
process are bypassed owing to the high background noise [4] as witnessed by the controversy on the 
linear stability of plane Poiseuille flow that lasted until 1975, when Nishioka et al. [5] obtained for 
the first time laminar flow at supercritical Reynolds numbers. 

The mathematical tools - bifurcation theory and the analysis of dynamical systems - are here less 
powerful. Two general properties seem to be the key to the present theories: separability of the sta- 
bility problem in order to reduce it to nonlinear ordinary differential equations, and the existence of 
a critical parameter. These requirements are not satisfied by the weakly nonparallel shear 
flows, v = v(ex,y), where e=l/R expresses the weakness of the variation in the streamwise direction 
x. For these flows, the Reynolds number R is introduced artificially by using a local length scale, 
say Xg, and therefore changes with the independent variable x. This Reynolds number together with the 
local parallel flow assumption provides an ad-hoc solution to the non-separability of the stability 
equations but lacks the meaning of -the critical parameter in a bifurcation problem. Even in plane 
Poiseuille flow, where the key requirements are satisfied, the detailed analysis of the cascade towards 
turbulence has only one step: once the flow becomes unstable to finite or infinitesimal disturbances, 
it "snaps through" to the fully turbulent motion. In view of the sequence of discrete events observed 
between onset of primary instability and ultimate breakdown [5,7], this result may raise some doubts. 
These are unjustified, however, since bifurcation theory uses the temporal growth concept, whereas most 
experiments on shear flows study the spatial development. In a strictly temporal experiment - as 
illustrated by the work of Thorpe [8] on Kelvin-Helmholtz instability in stratified liquids - the 
unstable plane Poiseuille flow at fixed Reynolds number would in fact directly develop into the tur- 
bulent motion over the full length and width of the channel. The term "snap through" simply denotes 
the lack of stable motions (such as Benard cells or Taylor vortices) different from the turbulent 
flow. It IS the lack of these intermediate stages and of their step-by-step bifurcation into motions 
of increasing complexity, that makes the experimental and theoretical analysis of the transition pro- 
cess in shear flows a rather difficult task. 

Nevertheless, experiments with reduced background noise level and carefully controlled disturbance 
environment have revealed important details of the transition process. Computer simulations of the 
temporal disturbance growth in a streamwise and spanwise periodic box have added insight. As a result 
of analytical and computational efforts, a theory of the secondary instability in shear flows evolved 
which can be characterized as a stability theory of streamwise periodic flows. The theory yet lacks 
the maturity of other tools, but it has been proven powerful enough for devoting one lecture of this 
course to its discussion. 

In the following we consider the secondary instability of three generic model flows: (i) the free 
shear layer, or mixing layer, (ii) the Blasius boundary layer along a flat plate, and (iii) the plane 
Poiseuille flow in a channel. For a detailed discussion of free shear layers, the reader is referred 
to the recent article by Ho & Huerre [9], A survey on Poiseuille flow, presenting the 1981 state-of- 
the-art, appeared recently [10]. 



7-2 

APPEARANCE OF SECONDARY   INSTABILITY 

In an three model flows, primary instability occurs with respect to traveling waves. In the free 
shear layer, the inviscid inflexional (or vortical) instability is governed by the Rayleigh equation. 
The spatial growth of the disturbances on a fast convective time scale redistributes the vorticity into 
almost periodically spaced lumps. "In the simplest terms one might think of the vortical lumps being 
rolled along by the difference in velocity across the mixing layer" [11]. A particularly clear visu- 
alization of the roll-up into vortices in the cat's eyes has been made by Roberts et al . [12]. Secon- 
dary instability occurs as vortex pairing, i.e., pairs of vortical lumps start to roll around each 
other and ultimately merge into a new structure of larger lumps with about twice the original spacing. 
Hot-wire signals show a changeover from the fundamental to the subharmonic frequency. Often, the 
pairing process repeats itself and governs the streamwise growth of the shear-layer thickness. 
Although small-scale three-dimensional effects appear simultaneously with the first pairing [13], the 
large-scale structure  remains  essentially two-dimensional. 

In the Blasius boundary layer, the primary instability with respect to T-S waves is governed by 
the Orr-Sommerfeld equation. Due to the viscous nature of the instability mechanism, the spatial 
growth on a viscous time scale is feeble at the large Reynolds numbers of concern. The small growth 
rates allow the use of Gaster's transformation [14] for relating to the simpler temporal growth 
concept. For a long period of time, the sequence of processes that lead from T-S waves to transition 
was derived solely from the vibrating ribbon experiments of Klebanoff et al. [15] and is now called K- 
breakdown. According to this pattern, a three-dimensional structure evolves whenever the T-S amplitude 
exceeds a certain threshold value. This structure is characterized by spanwise alternating "peaks" and 
"valleys", i.e., regions of enhanced and reduced wave amplitude. A system of counter-rotating stream- 
wise vortices occurs simultaneously with the peaks and valleys. The growth rate at the peak positions 
is essentially larger than the primary T-S growth and leads rapidly to the formation of an intense 
shear layer at the peak. The highly inflexional, instantaneous velocity profiles become unstable with 
respect to high-frequency disturbances indicated by "spikes" in the hot-wire signals. The appearance 
of spikes is considered the onset  of ultimate breakdown of the laminar into the turbulent  flow. 

Originally, the occurrence of spikes has been 
denoted as secondary instability, whereas the peak- 
valley splitting has been attributed to a spanwise- 
differential amplification of the T-S wave. A revised 
sequence has been introduced in 1979 [4,16] considering 
the peak-valley splitting as the manifestation of secon- 
dary instability. It has also been suggested [4] that 
this instability originates from parametric excitation 
of three-dimensional disturbances in the streamwise 
periodic flow created by the T-S wave. Moreover, recent 
experiments [17,18] have shown that the route to transi- 
tion in boundary layers is non-unique and sensitively 
depends on the experimental conditions. The difference 
is in the nature and scale of the three-dimensional dis- 
turbances that generate different characteristic pat- 
terns of A-shaped vortex loops in flow visualizations, 
as sketched in Fig. 1. In the K-breakdown, the A vor- 
tices are aligned along the peaks and repeat with the 
wavelength X of the T-S wave (Fig. la). At lower lev- 
els of the T-S amplitude, a staggered arrangement of A 
vortices is observed (Fib. lb). This pattern repeats 
itself with wavelength 2x^ and a fixed hot-wire records 
subharmonic signals. The spanwise wavelength X, may be 
larger or less than  X^,  depending on the T-S ampfitude. 

The portrait of transition in boundary layers fits 
very well to the observations in plane Poiseuille flow 
[10]. The only evident differences seem to be the 
possibility of subcritical disturbance growth in 
Poiseuille flow, the symmetry of the parabolic profile, 
and the constant Reynolds number. The K-breakdown has 
been studied, and supplemented by detailed results on 
the later stages of transition [6,7,20]. Flow visuali- 
zations [21,22] show the patterns of A vortices typical 
for the fundamental and subharmonic modes. (The flow 
visualizations are considered conclusive, although the 
facility used is too short for the parabolic profile to 
fully develop.) 

(a) 
— peak 

— valley 

— peak 

(b) 

Figure  1.    Pattern of A vortices    in flow 
visualizations    after onset of    secondary 
instability.        (a)    In-line    peak-valley 
structure for fundamental  modes,   (b)  Stag- 
gered structure for subharmonic modes. The 
flow  is  from left  to right. 

Evaluation of the observations for the various shear flows clearly shows that secondary insta- 
bility occurs whenever the primary waves exceed a certain threshold amplitude. It is tempting, there- 
fore, to consider the secondary instability as the instability of an almost periodic flow. For an 
observer moving with the phase velocity, the two-dimensional flow appears almost periodic in x, with a 
slowly varying amplitude. The disturbances originating from secondary instability may have the stream- 
wise wavelength x (fundamental modes) or 2Xx (subharmonic modes). The unstable fundamental modes are 
likely to be always three-dimensional, whereas subharmonic modes can be two-dimensional (vortex pair- 
ing) or three-dimensional. One may also speculate that the secondary instability is somehow related to 
the periodically spaced vortical lumps created by the primary wave. Morkovin [3] considers the 
behavior of  redistributed vorticity as key to the mechanisms  in the transition process. 
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THEORETICAL APPROACH 

From the foregoing, the theoretical approach suggests itself. In the first step, we establish the 
two-dimensional flow in the presence of finite amplitude primary disturbances. In general, this flow 
will not be strictly periodic. However, strictly periodic equilibrium states exist in Poiseuille flow 
[28,24], and these will serve for the formulation of the theory in section 4 in order to keep the 
mathematical treatment as clean as possible. Results for equilibrium states can be used as a benchmark 
for checking those assumptions necessary in the more general cases. Analysis of the linear stability 
of the streamwise periodic flow with respect to three-dimensional disturbances provides a system of 
stability equations with periodic coefficients called a Floquet system. Well-known properties of such 
systems [25,26] are exploited in order to identify classes and form of solutions. 

Various aspects of this approach have been applied in earlier work on stability of flows. Clever 
& Busse [27] calculated nonlinear steady convection rolls and performed an analysis of the secondary 
instability of these rolls. Much of the basic concepts is concealed in the semi-analytical technique 
of solution. Maseev [28] studied the occurrence of three-dimensional disturbances in the boundary 
layer by using a Floquet system, but neither his method nor his results on peak-valley splitting 
received particular attention. Kelly [29] found the vortex pairing in an inviscid shear layer "due to 
a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude 
growth of the fundamental disturbance", and related the subharmonic pairing mode to principal para- 
metric resonance in a Floquet system. His weakly nonlinear method of solution provided results consis- 
tent with observations. Without resort to Floquet theory, Craik [30] developed a weakly nonlinear 
model of a resonant .wave triad in the boundary layer. Chapter 48.2 of the monograph by Drazin & Reid 
[31] reviews some concepts for the analysis of periodic flows. The chapter closes with an example on 
gravity waves, where using Floquet theory led to an important discovery that was beyond the limitations 
of what was thought to be an equivalent weakly nonlinear theory. Floquet theory has also widely been 
applied in the stability analysis of time-periodic flows, as reviewed by Davis [32]. The major problem 
areas in this field, however, are quite different from the case considered here. 

With the advent of increasingly powerful computers, considerable progress has been made in simu- 
lating the transition process in unstable shear flows on the basis of the Navier-Stokes equation. The 
concept of secondary instability is inherent in these simulations but not always discernible. Some 
computational work was directed toward this problem. Pierrehumbert & Widnall [33] performed a linear 
stability analysis of an array of finite-size vortices in a shear layer with respect to fundamental and 
subharmonic disturbances. Beyond the pairing mode, they found three-dimensional modes of instability 
[33, Figs. 6, 9] that result in the patterns sketched in Fig. 1. Of the various numerical studies [9] 
of mostly spatially periodic and temporally growing shear layers, the work of Brachet & Orszag [34] 
bears the closest relation to our topic. The secondary and tertiary instability of a plane shear layer 
with a cubic profile as it occurs in an inclined fluid layer heated from above have been studied by 
Nagata & Busse [35]. However, the concepts of the stability analysis are difficult to extract from the 
semi-analytical method of solution. Orszag & Patera [36] emphasized the universality of secondary 
instability based on results for plane Poiseuille flow, plane Couette flow, pipe flow and a model of 
the boundary layer flow. The analysis was made at large amplitudes of the periodic flow in order to 
explain the observed low transition Reynolds numbers. Light was shed on the vortical nature of the 
secondary instability and on the energy transfer showing the catalyst role of the primary wave in the 
parametrical excitation of three-dimensional disturbances. This, as well as earlier work of Orszag and 
coworkers also showed some drawbacks of the numerical approach. With a computational box having the 
fundamental wavelength, no indication of a subharmonic instability could be obtained. The spanwise 
wavelength was imprinted by choosing the computational box. The choice of different initial conditions 
in the earlier [37] and later work [38, 39] led unintentionally to different modes of instability. 
Finally, the computational expense prevents a systematic analysis of the parametrical dependence. 
Simulations of secondary instability and transition in a spatially periodic, temporally growing 
boundary layer are currently performed by Spalart [40] at NASA Ames using a larger computational box. 
Preliminary results on fundamental and subharmonic instability and on the selected wavelengths agree 
favorably with experiments. 

A rudimentary theory of secondary instability based on a Floquet system has been simultaneously 
developed by Orszag & Patera [38,39] and Herbert [10,41] for equilibrium states in Poiseuille flow. 
The former work was motivated by the exponential growth of small three-dimensional disturbances 
observed in the numerical simulations, indicating the activity of a linear instability mechanism. The 
theory was only utilized for verifying the growth rate of the observed mode of instability for a large- 
amplitude equilibrium state. Numerical simulation was continued to be used as the main tool for 
analyzing the secondary instability [36]. The work of Herbert aimed at verifying the parametrical 
excitation of three-dimensional disturbances through T-S waves of small but finite amplitude [4]. He 
developed the theory [41-45] as a self-supporting tool for systematically identifying classes and modes 
of disturbances. The applications were oriented toward the onset of instability at low amplitudes and 
a comparison with experimental results. The limit of vanishing amplitude was studied as the key to 
evaluating existing weakly nonlinear models and to the construction of improved models. 

In the next section, the theory is first formulated for a strictly periodic situation using 
equilibrium states in Poiseuille flow as an example. Various steps in the derivation of the equations 
are sketched rather than described in detail. After reviewing the main results for Poiseuille flow, 
approximations are introduced that lead to a simpler formulation applicable to a wider variety of 
stability problems. 
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4. THEORY OF SECONDARY INSTABILITY 

We consider the flow of an incompressible fluid of density p and viscosity y between parallel 
plates of distance 2h. The flow is driven by a constant mean-pressure gradient in the x' direction. 
We denote with y the coordinate normal to the plates measured from the channel center, z is normal to 
the x',y plane and t the time. Velocity field v(x',y,z,t) = (u.v.w) and pressure p(x',y,z,t) are 
governed by the Navier-Stokes equations 

3v i 
■^ + (v • v)v = - vp + o- v^v,    V • V = 0 (1) 

where  R   is  the  Reynolds   number.     All  quantities  are  nondimensional   using h  and the mid-channel   veloc- 
ity UQ in steady  flow for reference.    The boundary conditions  require 

v(x',y,z,t)  =0      for      y = +1. (2) 

From  (1) we derive the transport equation for the vorticity ij = ' x v = (s.n.c). 

9r +  (v  •  V)a) -  (u)  •  V)v  = -3- V^u) (3) 

and note that the pressure is eliminated by taking the curl  of the momentum equation. 

We consider a two-dimensional basic flow V2 = (u2,V2,0), P2 subject to small three-dimensional 
disturbances V3 =  (u3,V3,W3), pa    according to 

v(x',y,z.t) =V2(x',y,t) +iV,(x',y,z,t) 

p(x',y,z,t) = palx'.y.t) + epslx'.y.z.t) 

and assume -. being sufficiently small for linearization. Substitution into (1) - (2) and comparison of 
like powers of e provide two sets of equations for the basic flow and disturbances, respectively. 

We compose the basic flow in the form 

V2(x',y,t) =vo{y) +Avi(x',y,t) 
(5) 

P2(x'.y,t)  = Po(x') + Api(x'.y.t) 

where vo,po represent plane Poiseuille flow, / 

Vo(y)  =  ("0.0.0). uo = 1 - y2. Po = -2x'/R. (6) 

The   steady   parallel    flow Vo,Po satisfies   equations    (1)   -    (2)   for   all    values   of   R.      The   component 
vi.pi is    considered    in   "the    form   of    a   wave,    i.e.    periodic    in    t,    periodic    in    x'    with   wave- 

length  X    = 2Ti/a,     and  traveling  with  the  phase   velocity c^ in  the  x'   direction.     In  a Galilean  frame 
moving with the wave, we obtain 

vi(x',y,t) = vi(x,y) = vi(x + x^,y), x = x'  - c^t (7) 

and consequently, Vi and V2 are steady and streamwise periodic.  The amplitude A in (5) is assumed to 
be constant and wifl be defined shortly. 

We express Vi = (ui,Vi,0) and the vorticity 7 x Vi = (0,0,51) in terms of a streamfunction 
i|;^ {x,y) such that~ 

ui = aiiii/ay. vi = -3i|)i/3x, ci = -i^^i' (8) 

Equation (3) for the basic flow then reduces to the nonlinear partial differential equation 
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with     boundary    conditions ai^i/Sx =5(|ji/ay = 0      at    y=+l- The    x-periodic    streamfunction    can    be 
represented by the Fourier series 

l-ilx.y) =   I   \{yW'^\ (10) 
n=^ 

For a real solution, we require ^_^ = ^J^, where t denotes the complex conjugate. The functions 
't'„(y).  ">0 are governed by a nonlinear system of ordinary differential  equations, 

1 n " 

{5-D2   - ina[(uo   - c   )0    - Un]}*  =7? +y(P +P II (111 

I 

P„ „ =  -ia{(ti'nD i,     - m*  D * '} n,m ^ffl    n^n       ^m n*n 

where D^  = d^/dy^   -  n^a^   and the prime denotes d/dy.    The boundary conditions  are 

<tio   = (t>o  = 0,    ((.^  = 4.1!^ = 0,    n  > 0    for   y = +1 (12) 

The condition on ^Q expresses the constant mean-pressure gradient. Note that the left-hand side of 
(11) has the form of the Orr-Sommerfeld equation for a two-dimensional T-S wave of wavenumber na with 
the complex eigenvalue c replaced by c^. The nonlinear coupling terms on the right-hand side vanish 
as A-+0. With a suitable normalization of (t>i , solutions of the system (11) - (12) exist for certain 
combinations of parameters that satisfy a nonlinear dispersion relation F(R ,a,A,c^)=0. This relation 
implicitly represents the neutral surface of plane Poiseuille flow [23,24]. Accurate approximations to 
these equilibrium solutions (whose amplitude A neither grows nor decays) can be obtained by numerically 
solving a truncated version (n < N) of the system (11) - (12). In the computations, the amplitude is 
usually defined by a local normalization of it>i, e.g. (t>i(0) = 1 which also fixes the phase of the peri- 
odic basic flow. For a more convenient comparison with experimental data, however, we introduce a 
posteriori  the normalization 

max       I    |*;(y)|2  =   I    |*'(y J|2  =| 
0<y<l    n=l      " n=l      "    "^ ^ 

max     ui(x,y^)  = ui(0,y 

(13) 

0<x<X m'        "^ '   '-"m' 

Hence, the amplitude A measures the maximum streamwise r.m.s. fluctuation of the basic flow (usually 
denoted as u') and the streamwise fluctuation velocity assumes a maximum at x=0. The search for a 
maximum is  restricted to the half-channel y>0 owing to the symmetry properties 

%(-y) = (-i)"^^,(y) (14) 

of the periodic equilibrium solutions. 

For the three-dimensional  disturbances V3 ,P3   in   (4) we obtain from  (1)  after linearization in e 

1 h 
'R '^   "  BT^~3   ■   *~2   •   V)V3   -   (V3   •   V)V2   = VP3,     V   .   V3   =   0 (15) 

However, we use the momentum equation only for retrieving P3. The analysis of the velocity field V3 is 
based on the vorticity equation 

^R '^   " at"'  ~3   ■   ^~2   •   V)  U3   -   (V3   •   V) U2   +   (^   •   V)   V3   +   (103   •   V)   V2   =   0 (16) 

We follow the usual procedure for deriving the stability equations: (i) substitute the basic flow V2 , 
(ii) take the derivative 5/az of the equation (16) for T13, (iii) take the deri vati ve 5/5x of ~the 
equation for Cs and subtract the derivative d/az of the equation for 53, and (iv) eliminate W3 by using 
the continuity equation (15). This procedure provides the following stability equations 

v\ R -    - (uo - c^) ^-^ a^ + ^o^l? 

aci^i g      a(|;i g      a2(|,i   3113    -^Hi   a2u3    a^vs      a^ci^^ av3 

"^ '^'^'ay~a7'^5x"ay' al^' az~ "^ al?~ 'dl®y "^ ap~' " a^aF^ " °' (^^) 
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a2(i,i      aCs        8TI3 52C|;I      aC3        653 8Sl aU3        8V3 

""" F>?~ ^5y~ '*' aT"' ' 5^7 'air """ aT"' ' alT ^   ax~    ay^' 
aci av3 , ,     aci 

- — (U3 ^ + V3 I-) ^   =0. (18) ay   ax      '' 3 ax      3 gy' ax ' ^   ' 

Since arij/az and a53/az can be expressed in terms of U3,V3, these two coupled differential equa- 
tions determine U3,V3  subject to the boundary conditions 

U3  = V3  = V3'  =0      for     y = ±1. (19) 

The properties of these equations can now be exploited in order to specify the form of the disturbances 
in more detai 1. 

We note that the equations are linear in U3,V3. Boundary conditions (19) and the coefficients in 
(17) - (18) are independent of z and t. Therefore, we can apply the normal-mode concept [31, p.11] in 
these variables and write 

V3 = e°^^P'v(x,y) (20) 

These disturbances are spanwise periodic with wavelength X^ = 2it/p. We consider p as real, whereas 
a =a + io,- is in general complex. Separability and exponential behavior in time follows directly 
from our assumption of a constant amplitude A. For P&O, the system (17) - (19) reduces to the equa- 
tions for primary instability of the parallel  flow Vo  with  respect to three-dimensional  disturbances. 

For A*0, the characteristic feature of the system (17) - (19) is the occurrence of x-periodic 
coefficients. Insight into classes of solutions and their streamwise structure can be obtained from 
the Floquet theory of ordinary differential equations. Although the system is complicated by the y- 
dependence of the coefficients, high order, and numerous terms. Hill's equation or even Mathieu's 
equation with damping can be considered as relevant models. Various types of resonance can occur in 
such a Floquet system [26]. With a streamwise periodicity of wavenumbera, primary resonance may lead 
to unstable solutions having the same periodicity in the streamwise direction. In a system with 
quadratic nonlinearity, principal parametric resonance is associated with subharmonic solutions of 
wavenumber i=a/2. A glance at the Strutt diagram and the effect of damping [26, Figs. 5-6, 5-9] shows 
that subharmonic instability may occur at the low^est levels of excitation. Moreover, instability may 
occur for wavenumbers in a band centered at a or a. These cases of combination resonance, 
tti  + a2  = a    or ai   - a2   = a,    are presently under study but will  not be discussed in the following. 

For our system, Floquet theory [25] provides solutions with V(x,y) = e'^^f(x,y), where f is x- 
periodic with wavelength X or 2\ , and Y is a characteristic exponent. As in the primary stability 
problem, at this point a choice must be made between the concepts of spatial or temporal growth. In 
the following, we use the temporal growth concept with complex a = Op + ia^. Since a absorbs the char- 
acteristic exponents y, we can seek for solutions with Y=0, i.e. in the form (20) with V(x,y) periodic 
in X with 2X   , 

V3   =e°^^P^    I       V   fy)e^"^\    a   =n/X^  -a/2 (21) 
n=- 

X 

Substitution into the disturbance equations (17) - (19) and comparing terms in like exponentials pro- 
vides the following system of ordinary differential equations for the Fourier coefficients 

[1 b^- in;(uo   - c^)  - a](k2  u^  - iniV)  - p^u^'v^ + A    l^ Q^^^_^  - 0, (22) 

(23) 

l = - 

{(io^  - ina(uo   - c^)   -a)D^ + inaui'}v^ + A J^ R^^^.^,   =0, 

where D    = d^/dy^  - k^,    k^  = p2  + ^Za^ ,    and with m = n - 2Jl, 

+ irvj(m -  2l)k2<!,j;^  + n*;']   + 2iJ!.av;(<|>;  -  k2*j^)  +  {2l  - m)iav;<t.; + Zilav^'*^. 
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^^  = \  = \  = 0      for      y = +1 - (24) 

The boundary conditions are 

and w    is obtained from continuity, 

inau^ + ;^  + iivi^ = 0. ,        (25) 

The homogeneous equations (22) - (24) represent an eigenvalue problem with the eigenvalue a and an 
associated eigensolution that consists of a sequence of functions {u ,v }. The system determines the 
solution for given a, p, R and given basic flow (u , A, <|) ). For ASQ,"equations (23) reduce to Orr- 
Sommerfeld equations for three-dimensional disturbances of wavenumbers na ,p and with eigenvalues 
Cp = Cf- + ia/(nay. Equations (22) reduce to the equations for the y-component of vorticity first 
derived and studied by Squire [46] in his analysis of three-dimensional primary disturbances. We 
therefore suggest that these equations be called Squire equations. Note that these equations support a 
separate set of eigensolutions if v^sO. These Squire modes cannot lead to primary instability [46] but 
are important for the resonant interactions that lead to secondary instability. The link between modes 
of secondary and primary instability can easily be traced by varying the amplitude A+0. 

At closer inspection of the system (22) - (24), it becomes obvious that the equations uncouple 
into two systems of equations for the Fourier coefficients v with n even and odd, respectively. The 
two separate classes of solutions take the form ""^ 

v^ = e^'VP^ I     :v2,(y)e^'"''^ (26) 
n= 

,°t ipz 
V = e^'-e'P" I      V   , . i(2n+l)ax (27) 

n = -= an+l^-'^'^ 

The fundamental modes y^ have wavelength X^ and originate from primary resonance. The subharmonic 
modes v^ have wavelength 2X^ and arise from principal   parametric resonance. 

The characteristics of the modes (26) - (27) are formally consistent with observations. The 
fundamental modes are doubly periodic with X and \ as the ordered pattern of A vortices in Fig. la 
that is characteristic for peak-valley splitting. Tfie aperiodic term VQ in (26) represents a spanwise 
periodic mean-flow distortion (UQ) and a longitudinal mean-vortex system (VQ, Wg) that are known [15] 
to accompany the peak-valley splitting. The aperiodic term is absent in the subharmonic modes (27). 
These modes are doubly periodic with 2K and X^, and invariant under the translation (x,y) ->■ 
(x + X^, z + X /2) that is characteristic for the staggered pattern of A vortices in Fig. lb. In 
frequency spectra from a laboratory-fixed probe, the subharmonic modes contribute peaks at frequencies 
f/2,  3f/2,..  but not  at the fundamental  frequency  f=ac    and its harmonics. 

For both classes of modes, the eigenvalues a are in general complex. Exploiting the fact that (^l 
must be real, however, it can be shown that the spectrum consists of either re^al eigenvalues or complex 
conjugate pairs. If CTI is a complex eigenvalue and the sequence {u , v}, the associated 
eigensolution, then a second solution is 02 = af, {u ,„v}2. = {u , v }i''',^If\he system supports 
real eigenvalues a=a , the eigensolution satisfies ^{u \ v } =^{u 7v } ' to within a redundant 
complex factor (that can be suppressed by proper normalizal;ion). ^ In^ this case, the aperiodic 
terms UQ,   VQ    in  v^ are real, whereas WQ   is purely imaginary. 

The   coefficients  of  the  stability  equations   (22)   -   (23)   are  in general   complex,   except   for  n=0. 
However,   as  suggested  by  the  symmetry of the spectrum about the  real axis,  a formulation  can  be found 
with real coefficients by rewriting the Fourier series (26) - (27) in trigonometric form, i.e. by 
i ntroducing 

^n  = 7 C^n ' In'' ~^n  = YT C^  " In'-  "^ ^ (28) 

and rearranging the equations accordingly. The new functions u*, v* are governed by a system of 
equations with real coefficients. The solution however is only real for real a. Although mathe- 
matically equivalent to (22) - (23), use of the real system is advantageous for the numerical work. 
The numerical solution requires drastic truncation of the Fourier series. The lowest approximation 
(N=l) takes ())^, |n|<N=l into account and provides VQ = VQ", VJ for fundamental modes, v* for the 
subharmonic modes. The next approximation (N=2) provTdes yj in^f and ifj in v . Accordin~g'ly, trun- 
cation at N requires the simultaneous solution of 4N + 2 equations of the Orr-Sommerfeld or Squire type 
for the fundamental modes, 4N equations for the subharmonic modes. 



7-8 

5. -RESULTS FOR EQUILIBRIUM STATES 

A detailed report on the results for equilibrium states in plane Poiseuille flow is in preparation 
[47]. Some results are given in [42-44], The analysis concentrated on the range of subcritical 
Reynolds numbers 500CkR<5772, with wavenumbers a=»l and amplitudes A<0.025. Experiments [5-7] and 
computational [48] studies concentrated on the same range. The peculiar y-symmetry of plane Poiseuille 
flow and of the coefficients i}^ of the equilibrium states provides two groups of modes with different 
y-symmetry of the v.. Symmetric and antisymmetric fundamental modes have similar but not identical 
character whereas symmetric and antisymmetric subharmonic modes are complex conjugate to each other. 
Instability with respect to fundamental modes occurs typically at amplitudes in the range of A=0.01. 
The principal (most amplified) mode is associated with real a, i.e. the disturbance is synchronized 
with the basic flow. The amplification rate a^ increases approximately with the square of the 
amplitude, a =0(A2). The instability is strong in the sense that for A=0.025 the disturbance grows by 
a factor of 100 within about five cycles of the basic flow. The strong growth on a fast convective 
(rather than viscous) time scale originates from the strong mechanism of combined vortex tilting and 
stretching [36]. Instability can occur in a broad band of spanwise wavenumbers p, with maximum growth 
in the range 1.2<p<2. Superposition of the disturbances to the basic flow provides the distributions 
of the streamwise velocity fluctuations that are typical for peak-valley splitting. 

Instability with respect to subharmonic modes occurs at even lower amplitudes in the range of 
A=0.005. The principal mode is complex but the value of a^ is rather small except at small p. The 
amplification rate increases almost linearly with the amplitude, a^=0(A) and reaches at A=0.025 a 
value comparable to'that for the fundamental modes. Onset of subharmonic instability occurs in a small 
band of wavenumbers centered at p=0.75. A broad-band character develops at larger amplitudes, with a 
sharp cutoff at low p indicating suppression of the two-dimensional (p=0) pairing mode in the presence 
of walls. 

All these results are qualitatively and (whenever comparable data exist) quantitatively consistent 
with experimental and computational results. Striking similarity also exists with the more detailed 
experimental data for the Blasius boundary layer. This similarity is less surprising in view of the 
origin of the secondary instability. At sufficiently large amplitude, the primary wave produces an 
array of vorticity concentrations near the centers of the cat's eyes, at the edge of the viscous layers 
near the walls. Secondary instability originates from bending the distributed vortices into regions of 
different streamwise velocity. Therefore, secondary instability can be considered a generic phenomenon 
in flows with primary T-S wave instability. 

6. APPROXIMATIONS 

The application of the above theory is restrained by the use of equilibrium states as a strictly 
periodic flow. These nonlinear states may be unavailable or may not exist in the parameter range of 
interest. The finite amplitude A plays a dual role in the theory. First, it appears in the equations 
(11) for the basic flow and generates harmonics ((!> , n>l), a mean-flow distortion ($0), and a 
distortion of the fundamental {^i). Second, the amplitude multiplies the periodic terms in equations 
(22) - (23) and directly controls the parametrical excitation of secondary modes. Extensive numerical 
studies using results for N=2 as a benchmark have shown that the neglect of nonlinear terms in the 
basic flow has a slightly stabilizing but insignificant effect [43]. For practical purpose, the shape 
assumption [49] can be applied, i.e. the nonlinear solution (|)i can be replaced by 

*i(x,y) =*(y)e^"'' + *^(y)e-^'''' (29) 

where <))(y) is the ei genfunction associated with the principal mode c* = c^ + ic^ of the Orr-Sommerfeld 
equation for given R and a, and p=0. In physical terms, the use of (29) requires that for the ampli- 
tudes of concern the nonlinear effects on the y-distribution of vorticity (Ci) can be neglected. As a 
by-product, the amplitude is no longer restricted by the nonlinear dispersion relation for equilibrium 
states, and can be arbitrarily chosen. 

One of the crucial prerequisites of the theory is the constart.fmplitude A. When using linear T-S 
waves in (29), however, the amplitude varies exponentially, A~ e i . In order to overcome this prob- 
lem, we make the quasi-static assumption, i.e. the basic flow is assumed to vary so slowly compared to 
the disturbances that it can be considered as steady.    This assumption  requires 

|ac.|«|a^|. (30) 

Obviously, this assumption blurs the onset of secondary instability in a basic flow of varying ampli- 
tude. In view of the feeble (viscous) T-S growth and the strong (convective) growth of three-dimen- 
sional disturbances, however, the quasi-static approach can be justified for the situations of practi- 
cal   interest. 

The use of the shape assumption essentially simplifies the stability equations. In order to 
obtain equations with real  coefficients, we consider fundamental  modes in the form 

^^ = e°^e'^^Lyt{y) + 2v2(y)cosax - 2v2(y)sinax] (31) 
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The u and v components are governed by the equations 

(R Do   - cr)  uo   - udvo   - 2A{a[(u2)'<t>^   -  (uj)'*^] + Vj*; + Vz*-'}   = 0 (32) 

(^Do   - a)DoVo  + 2A{a2[(u2)"*^ +  (uj)"*^  + Z{ut)'^'^ + 2(u2 ) > ! 

+ U2((t.;  + p24,^)  + U2"(<t>|  +p24,.)]  - a[(v2)"'i|>.   -   (V2')"'* 

+ 2(V2)"*; - 2(v2")"*; + (V2)'(*'' - p2^.) - (V2")'{*;: - ^2*^) 

- 2p2(v2*-   - V24i^)]}   = 0 (33) 

(R-D2   - aMu2   +ak^(uo   -  C^)U2'   - a2 (UQ   -  C   )(V2'')'   +0(^-62   - 0){V2")' r' ' ' "      -pi^-zj       -VR 

- R2||'WJ . a/„fi2r^,j■^ ■> 
34) 

(35) 

p2u(iv2   - A{ap2[(uo)'4,.   -  uj*-]   - a2(vo)",t>^  + ^2^+^,^    =  Q 

(R   D2   - a)D2V2   + a[{uo   -  C^)D2   -  ui!]v2'  + aA{a[(uo*) "41 ^ + uJ'U'; -   k^*   ) 

+  (vj)'"*.   + (vo)"*'  +  (vj)'(*;.'  - k^$.) + vo^{$- - k^^')}   = 0 

(^62   - a)k§U2'   -ak^(uo   -  C^)U2   - o:2(uo   -C^)(V2')'   -a(iD2   -a){v2)' 

-   p2u(;v2"   +  A{ap2[(uo^)>^   -   uo*^]   + a2(vo)>.    - ^2^+^.}    =  Q (jgj 

(^D2   - a)D2V2" - a[{uo   - c^)D2   - u^'lvj  + aA{a[(uo) > .   - ^oW-   - k^^) 

+  {vo)"'V + (vj)"4.; + (vo)'{*; - k^*^) + vo(4>;'- k^*;)}   = 0 ■     (37) 

where *  = *, + i*^.,      D^  = d2/dy2   - k2,      k2  = p2  + (^,2,    j^e boundary conditions are 

"0  = VQ  =  (vo)'  = uj = V2  =  (v*)'   =0      for      y = +1. (38) 

and the w components are obtained from 

wo=|-(vo)',    W2  = ^(vf)' + au2] (39) 

Note that the six equations  (32)  -  (37) are coupled and need to be solved simultaneously. 

The subharmonic modes take the form 

^s  " ^^° e^"Cvi (y)cosax - Vi"(y)sinax] (40) 

The u and v components are solutions to the equations 

(iBi   -a)kfur tak?{uo   - c^)u[   -;2(uo   - C^)(vr)'   1  {^D,   -a)a(vl)' 

- p2u(;vf  - A{akf[ul*^ +  uf*:] + 2^(a2   - ?,2 )L{ul)',^ ^ ?   (uf )'<)>.] 

+ p2[vt*;' + vr*;] - a2[(vl)>' ± (vf)'*;] - 2;2[(v|)"*. ± (vf)>^])} = o. 

(p 61   - a)Divf + <x[(uo  - c^)Di   - ui'lv"*" + A(4i2kj[u+^^  + ^±^  j 

+ 4;2[(u|)>.'  t  {uf)>;] + 4;2[(ut)'>.  ±  (uf)>^] +;[vl(4."  - 3k?*   )■ 

(41) 
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T  vfU^' - 3k?*.)'] + 2;[(vt)'(*'; - kh^)  + {vf)'(*V - k?*.)] 

+ 3;[(vt)>;+ (vr)>:] + 2aC(vt)'%^? (vf)'"*^]} = o,        (42) 

where either the upper or lower signs are used throughout. The boundary conditions are 

uf = vf = (vr)' =0  for  y = ±1, (43) 

and the w components are obtained from 

wf =i[(vr)' + auj]. (44) 

In the subharmonic case, four coupled equations must be solved simultaneously. 

The eigenvalues a are in general complex (complex conjugate pairs). However, the case of the real 
eigenvalues a=a is of particular interest since synchronization between basic flow and disturbances 
offers an optimum chance for energy transfer. At larger amplitudes, the principal modes of fundamental 
and subharmonic instability are likely to be associated with real eigenvalues. As a consequence of the 
shape assumption, the amplitude appears linearly in the stability equations. As long as a(A) is real, 
this enables an inverse eigenvalue search for ^{a), i.e. to find the amplitude that produces a given 
amplification rate. 

For A=0, the stability equations reduce to Orr-Sommerfeld equations and Squire equations written 
for the real and imaginary parts. Although the equations are lengthy, they can be considered as a 
straightforward extension of the primary stability problem. The secondary level of the stability 
analysis is obviously more involved but tractable with essentially the same numerical techniques suited 
for solving the Orr-Sommerfeld equation. 

The stability equations (32) - (38) have been utilized for analyzing fundamental modes in plane 
Poiseuille flow. In applications for boundary layers, the equations (32) - (33) for the aperiodic 
terms may require modification owing to the nonparallei ism of the flow [4]. Equations (41) - (43) were 
used for Poiseuille flow and for the analysis of the subharmonic instability of the Blasius boundary 
layer. 

7. NUMERICAL METHOD OF SOLUTION 

In our numerical work, little or no guidance was available on the eigenvalues of the secondary 
instability problem. In this case, solving the boundary value problem is clearly preferable to 
shooting methods on the basis of artificial initial value problems. With proper methods of 
discretization, boundary value methods provide access to the spectrum of eigenvalues that we found 
extremely helpful in the initial orientation period for any new problem under consideration. Spectra 
were also helpful in tracing the intricate crossings of eigenvalues at low amplitudes. On the other 
hand, the sole use of a global procedure is expensive in terms of computer time. Therefore it is 
recommended to combine the use of spectra with local procedures for tracing single eigenvalues and 
pairs of eigenvalues. We have primarily used Wielandt's method [50] for this purpose. 

Global and local procedures are based on an algebraic substitute for the differential equations. 
The algebraic equations were obtained by employing a spectral collocation method [23,24] based on 
Chebyshev polynomials. Accurate solutions can be obtained with relatively small numbers of collocation 
points. In plane Poiseuille flow, we have exploited symmetry and used typically 18 collocation points 
in the half-channel. In the analysis of boundary-layer flow, we have used an algebraic transformation 
of the semi-infinite y-domain to a finite domain 0<;TI<1 and employed only odd Chebyshev polynomials 
[45] with typically 30 collocation points. The accuracy of the results is mainly governed by the 
accurate representation of the basic flow. Otherwise, the results on the secondary instability are 
rather insensitive to the number J of collocation points. The M x M real algebraic systems with 
M = 6J + 18 for fundamental modes and M = 4J + 12 for subharmonic modes are rather large, but 
tractable. More efficient methods of solving the secondary stability equations are currently being 
developed. 

8. FINAL REMARKS 

After a glance at the tedious equations of sections 5 and 5, .and in view of the typically 100-200 
unknowns in the algebraic eigenvalue problem, the reader may be discouraged to ever use this method of 
analysis. He may change his attitude, however, when viewing the comparison of theoretical and experi- 
mental [17] results for the subharmonic instability in the Blasius boundary layer shown in Figs. 2 and 
3. (For a more detailed discussion see [45].) The amplitude growth curves for the T-S wave and the 
subharmonic disturbance in Fig. 2 verify the growth rates predicted by the present theory. An adjust- 
ment had only to be made by choosing the initial (background) amplitude of the subharmonic disturbance 
that could not be obtained from the experiment. Fig. 3 is representative for the correct prediction of 
the spatial structure of the disturbances, that extends over all available experimental data. Perhaps 
the most important conclusion from Fig. 2 is the ability of the theory to predict the onset of signi- 
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ficant three-dimensionality for a given disturbance background. Due to the rapid growth of the three- 
dimensional disturbances and subsequent breakdown, this seems to be a more rational approach to pre- 
dicting transition Reynolds numbers than the methods currently used, e.g. the e" criterion. 

400 500 600 700 

Figure 2. Amplitude variation with R=Rj^ '^for 
(a) the T-S wave with an initial amplitude 
Ao=0.0044 and (b) the subharmonic disturbance 
of wavenumber p/R = 3.3 _• 10 ** with an initial 
amplitude Bo = 1.86 • 10"^. Comparison  between 
( ) theory and (+,o) experiment [17, Fig. 
22a] at frequency ac /R = 1.24 • ID""*. 

Figure 3. Distribution of the streamwise r.m.s. 
velocity of a subharmonic disturbance at R=608, 
p/R = 3.3 . lO-^o^c^/R = 1.24 • lO"'*. Dis- 
placement thickness and position of the critical 
layer are shown as 6* and y , respectively. Com- 
parison of ( ) theory and (o) experiment [17, 
Fig. 21]. 

The theory of section 6 can be applied to a variety of stability problems. However, the theory is 
also open for improvements and extensions. The spatial growth concept can be applied, and corrections 
can be made for the yet neglected amplitude variation of the T-S wave. This seems to be of particular 
importance for the analysis of free shear layers and boundary layers with, strong adverse pressure gra- 
dients. Improved techniques for solving the equations will also help to develop the analysis of 
secondary instability into a common tool for understanding and predicting the three-dimensional stages 
of the transition process in shear flows. 
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LAMINAR FLOW CONTROL - VISCOUS SIMULATION 

by 

Professor E.Reshotko 
Dept. of Mechanics & Aerospace Engineering 

Case Western Reserve University 
Cleveland, Ohio 44106, USA 

SUiyiMARY 

Laminar flow control offers the possibility of major reductions in aircraft 
drag. This lecture provides the theoretical background for the possible 
stabilizations of the laminar boundary layer due to shaping, suction and cooling. It 
comments also on the effects of vehicle and environmental factors on the 
implementation of that technology. 

Viscous simulation is the name given to the technology of adjusting boundary- 
layer conditions on a wind tunnel model so that results can be reliably extrapolated 
to flight conditions. This lecture will discuss the need for an underlying simulation 
methodology, will describe some alternate methodologies, will discuss the needed 
boundary-layer controls/trips for implementation , and finally the process of scaling 
wind-tunnel results to flight conditions. 

INTRODUCTION 

This lecture comes virtually at the end of this course and is to be viewed as a 
presentation of applications of our stability and transition knowledge. The two 
special applications to be developed herein are a) transition delay as a means of 
developing a low drag technology for aircraft and underwater vehicles, and b) 
transition control as a factor in developing a wind tunnel testing technology that is 
extrapolable to flight conditions. 

In each case, the general topic will be outlined. The information related to 
stability and transition will enter as needed in the exposition. 

LAMINAR FLOW CONTROL 

The drag of an airplane at cruise flight conditions is about 60% friction drag 
for present day transport aircraft with turbulent boundary layers on their wetted 
surfaces; most of the balance is induced drag. For underWater vehicles, the friction 
drag is more like 90% of total drag. In each case therefore, there is significant 
opportunity for performance improvement through drag reduction. 

More specifically, the drag reduction opportunities lie in stabilizing the 
laminar boundary layer as much as possible so that more of the friction drag is at 
laminar rather than turbulent levels. There can additionally be reduction of the 
turbulent friction drag of those portions of the vehicle that cannot be laminarized. 
Some of the techniques envisioned for turbulent friction drag reduction are polymer 
additions, riblets, large eddy break-up devices (LEBU) and microbubble additions. 
These will not be discussed in this lecture. It will rather be devoted to 
application of the transition modifiers {which are really stability modifiers) to 
increasing the extent of laminar flow on the vehicle surfaces. 

The Transition Modifiers       ' 

As already pointed out in the stability lectures, from the Rayleigh theorem, an 
inflected velocity profile is inviscidly unstable. The flat plate (Blasius) boundary 
layer is not inflected and hence is inviscidly stable. Incompressible boundary layers 
under adverse pressure gradient are inflected while those under favorable pressure 
gradient are not. More generally, even including viscous effects, the stability of a 
velocity profile improves as its second derivative near the wall becomes more 
negative. 
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Thus the transition modifiers can be nicely identified by examining the boundary 
layer momentum equation in the near vicinity of a wall: 

V^    :jf >.jy d^ ^ as    /    d^^ 

It is readily seen that suction (v^ < 0), cooling in air  ( 2ix^° ' "^S ** ^ ^' 

heatinq in water  ( 3!i-i.O , ilT<.0 ), and favorable pressure gradient all tend to 

make ( ^-^ ) more negative. The stabilizing effect of all of these factors has been 

demonstrated through direct computation involving the appropriate systems of 
disturbance equations and boundary conditions. From the above reasoning, the effects 
of these techniques should be additive. This has also been confirmed in the limited 
studies to date of combined effects. 

The drag reduction capabilities of all of the above transition modifiers have 
been examined. They will each be described. 

Favorable Pressure Gradient - "Shaping" 

The exploitation of favorable pressure gradient for stabilizing laminar boundary 
layers dates back to the 1930's and led to the development of the NACA 6-series 
airfoils. This technique has also been used extensively for low Reynolds number 
airfoils such as found on sailplanes. Because this stabilization technique requires 
no "active" system, it is often referred to as "natural laminar flow." On any shaped 
surface, whether an airfoil or a body, the favorable pressure gradient extends to the 
longitudinal location of the pressure minimum. Beyond that point the pressure 
gradient becomes adverse. If the flow remains laminar over the entire favorable 
pressure gradient region, then beyond the pressure minimum, it either shortly 
undergoes transition, or else proceeds to laminar separation followed by transition. 
Which of these occurs depends on many factors including the shape itself, angle-of- 
attack, Reynolds number, surface roughness, etc. 

The objective in design is to have as extensive a region of favorable pressure 
gradient as possible followed by some means of maintaining attached flow in the 
adverse pressure gradient region. 

A design example for a body of revolution is shown in Fig. 1. It is seen that 
shifting the pressure minimum downstream leads to a downstream shift in the estimated 
transition point. 

A second very recent example applies shaping to turbofan nacelles. Younghans 
and Lahti (1984) indicate that the reshaped nacelle shown in Fig. 2 should have lower 
drag than a conventional nacelle. Wind tunnel tests of an installed (wing-pylon- 
nacelle) shaped nacelle show an effective drag reduction of about 92% of the 
predicted value of 13 counts. 

s 

Suction 

Laminar Flow Control by suction (LFC) also dates back to the late 1930's and 
early 1940's. Pfenninger (1946) developed the use of suction slots for this 
application and showed in his initial experiments in Zurich that for small suction 
rates (Cn = 0.0014 to 0.0018), full chord laminarization could be obtained on both 
sides of a 17%-thick airfoil over a range of angles of attack. It was also realized 
in these studies that the results were dependent on the turbulence and acoustic 
disturbance levels in the wind tunnel. 

The interest of the United States Air Force in this technique is described by 
Antonatos (1966). Following studies at NACA - Langley of using suction to increase 
the extent of laminar flow on airfoils, the USAF entered into a program with Northrop 
Corp. to study the feasibility of laminar flow control in flight and to establish 
design criteria for laminar flow control. The program included flight tests of an 
unswept suction glove on an F-94 airplane and culminated in the successful X-21 
flight tests of a swept LFC wing using a large number of fine suction slots designed 
by Pfenninger. Measured performance at a chord Reynolds number of 47 million (Whites, 
Sudderth and Wheldon 1966) indicated nearly complete laminarization of the upper 
winq surface and about 75% of the lower surface. This resulted in a 20% reduction in 

i.ccioj..^j.j. xcy Of sucn an aircrarc unat ciie uemy xnv co..xyo>. = ^ --^   ^..^- rr-''   "^f 
concerns included the maintenance of clean slots - free from clogging, the loss of 



laminar flow in flying through rain or ice, effects of leading edge icing and 
contamination by insects, among others. 

Pfenninger and Reed (1966) have summarized the stability issues for laminar flow 
control by suction on swept wings. These include stabilization of the chordwise flow 
on the major portion of the wing, stabilization of the crossflow in the leading and 
trailing edge regions of the wing, and the criteria for avoiding transition through 
leading edge contamination. 

The phenomenon of leading edge contamination is as follows: For a swept wing 
attached to a fuselage, turbuent flow from the fuselage boundary layer can spread 
along the wing stagnation or attachment lines. Such contamination can also occur if 
the spanwise flow at the attachment line is tripped by excessive surface roughness. 
Leading edge contamination can be avoided by keeping the momentum thickness Reynolds 

number on the attachment line below 90 or 100. (Re^   ='^V >'  where &    is the 

momentum thickness of the laminar spanwise boundary layer along the attachment line.) 
Poll (1977) confirmed these findings, namely that leading edge contamination can be 
avoided by shielding the attachment-line flow from disturbances, reducing sweep angle 
and leading-edge radius. 

Interest in laminar flow control for aircraft was revived in the late 1970's as 
part of NASA's Aircraft Energy Efficiency (ACEE) Program. The recent developments are 
described by Wagner and Fischer (1984). They include the development and testing of 
specially designed supercritical airfoil shapes for this application, the development 
and testing of slotted suction surfaces for such airfoils as well as surfaces made of 
electron beam perforated titanium sheets. The supercritical airfoil is especially 
attractive for this application because of its mildly favorable pressure gradient 
over most of the airfoil surface. This tends to reduce the suction requirement. 
Wagner and Fischer also describe the concurrent developments in structural technology 
for such LFC wings and the design of leading edge systems that keep the leading edges 
free of the residue of insect impacts and of icing formation. 

The goal for such LFC wings is shown in Fig. 3, while a more realistic objective 
may be as shown in Fig. 4. In any case, friction drag coefficients of up to twice the 
laminar level are envisioned - well below the level for turbulent flow. The early 
work in Laminar Flow Control is summarized in the Lachmann (1961) volumes while 
Bushnell and Tuttle (1979) provide a comprehensive bibliography of all but the most 
recent work. 

Heating or Cooling 

Many authors have confirmed that surface heating stabilizes water boundary 
layers (Wazzan, Okamura and Smith 1968, 1970; Lowell and Reshotko 1974; 
Strazisar, Reshotko and Prahl 1977). The effects of heating on stability carry 
through to transition as evidenced in the results of Barker and Jennings (1977) (Fig. 
5) where in the entrance flow boundary layer of a constant diameter pipe there was 
considerable increase in transition Reynolds number with heating. 

The stabilizing effect of cooling in air was indicated even earlier (Lees 1947) 
than the above results for water. The effect of cooling on transition was 
demonstrated dramatically in the flight transition tests of a cone by Dougherty and 
Fisher (1980), who observed the transition Reynolds number to vary approximately as 
T„~' (Fig. 6). The use of cooling in air for drag reduction is a possibility only 
for an aircraft using a cryogenic fuel such as hydrogen. Reshotko (1979) has shown in 
his study that drag reductions of the order of 20-25% are within reason by cooling 
75% of the wing surfaces and about 20% of the fuselage length. 

Vehicle and Environmental Factors 

The realization of increased lengths of laminar flow by exploiting the 
stabilization techniques discussed above depends on several additional factors. The 
factors identified as "vehicle factors" relate to the character of the vehicle 
surface, vibrations and noise. The environmental factors have all been mentioned 
earlier and include those studied in connection with receptivity as well as ice 
crystals, rain, insects, dirt, etc. Our knowledge about most of these factors 
suffers from a very poor data base. What can be done at best is to present some 
general considerations and rules-of-thumb that will have to do until they are 
replaced by something more substantial. 



Surface Roughness 

Surfaces of low drag vehicles are designed to be nominally smooth, therefore 
surface roughnesses should be small. A measure of surface roughness effects is 
through the parameter Re|^ = Uj^k/ i/^ where k is the roughness height, u^ is the 
velocity at height k in the laminar boundary layer and y^ is the kinematic viscosity 
evaluated at height k. Distributed roughnesses with Re|^ < 25 should behave as smooth 
surfaces. This is in fact the criterion for a hydraulically smooth surface in 
turbulent flow. If a surface is prepared with abrasives, the above specification 
should apply to the deepest scratches rather than to the rms value. 

For a slotted suction surface, the suction slot design must be such that the 
suction flow is predictable, stable and uniform along the length of the slot, and 
free from such surface defects that would interfere with laminarization. Any surface 
corrosion or slot clogging would have to be considered as a contribution to 
roughness. More detailed considerations are given by Pfenninger (1977). 

Surface Waviness 

Surface waviness can result either from manufacture or else from surface 
deformation under load. The surface waviness criterion that is prevalent in laminar 
flow technology is based on a data correlation by Carmichael (1959) 

A H  A (Ke^y/^   J 
where 

h  is  the  full  amplitude over wavelength  A 

c  is  the wing  chord,   or  body  length 

A. is  the  sweep  angle   in  the  case  of  a wing 

The allowable waviness amplitude is of course less than h. Common wisdom indicates 
that a proper waviness criterion could be obtained from stability considerations to 
T-S waves or in the case of a concave waviness also to Gortler instability. These 
stability  studies  have however  not yet been done. 

Surface Vibrations 

Linear vibrations reasoning dictates that these will be important only in 
situations where the surface'vibrations spectrum overlaps the T-S growth frequency 
bands   of   the  boundary  layer. 

Vehicle Maneuvers 

If vehicle maneuvers are such that the characteristic period of a maneuver is 
comparable to the flow time, then the vehicle boundary layer is unsteady. Very little 
of a definitive nature has been done on the stability and transition of unsteady 
boundary layers. For the most part, vehicle maneuvers are slow enough so that the 
flow   is  quasi-steady. 

Ice  Crystals 

Intermittent or partial loss of laminarization can occur on an aircraft when ice 
crystals are ingested into the boundary layer and trigger turbulent events. Similar 
effects can occur for underwater vehicles due to suspended ocean particulate. It is 
estimated (Chen, Goland and Reshotko 1979) that ingested particles must be of the 
order of half the boundary layer thickness or larger to serve as an effective trip, 
and of course the degree of intermittency or loss of laminarization depends on the 
particle flux. 
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Insects, Dirt, Dust, etc. 

The leading edge of the aircraft wing must be protected at low altitudes from 
insects, dirt, dust, etc. since any roughening or residue will behave as a roughness 
at higher altitudes. In slotted wing designs, the slots near the leading edge can be 
used for keeping the leading edge clean at low altitudes by blowing through them. An 
alternative protection is to use a Krueger leading flap as an insect shield backed up 
with a spray system to keep the leading edge clean (Wagner and Fischer 1984). 

Concluding Remark 

It has been demonstrated beyond any doubt that the stability modifiers - 
shaping, suction, heating in water and cooling in air, can lead to significant runs 
of laminar flow on aircraft and underwater vehicles. The practical use of these 
techniques depends on overcoming any problems arising from the vehicle and 
environmental factors that have been described. Of course, the resulting low drag 
vehicle must be able to fulfil its mission reliably and economically. There is a 
definite possibility that vehicles will be built in the near future that make use of 
laminar flow technology. 

VISCOUS SIMULATION 

While wind tunnels have now been used for about a century to obtain performance 
data for vehicles to be used in atmospheric flight, there are still numerous 
uncertainties and ambiguities in the interpretation of the data and in reliably 
extrapolating them to flight conditions. The problem can be divided into two parts - 
far field and near field. 

The first of these recognizes the finiteness of the wind tunnel as compared to 
the infinity of the flight domain. Techniques have been proposed for assessing the 
blockage and interference effects due to the finite dimensions of the wind tunnel. 
More recently, much attention has been given to the adaptive wind tunnel - a facility 
in which through bleed at the wind tunnel walls, the pressure distribution far from 
the model can be set equal to that in the infinite flow field corresponding to the 
pressure distribution on the model. This requires on-line potential flow or Euler 
computation of the inviscid far-field flow. The recent status of work on wind tunnel 
interference and adaptive wind tunnels is as found in the proceedings of the recent 
AGARD Specialists Meeting on Wall Interference in Wind Tunnels (AGARD CP-335, 1982). 
The near-field simulation is referred to as viscous simulation since it involves 
adjusting the boundary layer conditions on a model in such a way that the results can 
be reliably corrected to flight Reynolds numbers. This is usually done by some form 
of boundary layer tripping since transition locations in flight are likely to occur 
at smaller fractions of chord or fuselage length than in the wind tunnel. 

The topic of viscous simulation has not been formally addressed in recent years 
and perhaps never. Rather, the matter has been handled by a body of folklore based on 
years of experience in relating wind tunnel to flight tests. The folklore includes 
where and how to trip the boundary layer; and how to scale wiijd tunnel results to 
that for the full scale vehicle in flight. There are many such folklores, a large 
portion of them proprietary. 

Because of the sensitivity of wind tunnel results in the transonic regime in 
particular to tunnel operating conditions, there is a special interest at present in 
trying to give viscous simulation a more scientific basis and thus to replace 
folklore with a set of well-thought-out procedures. This may be a bit more difficult 
than apparent because the aforementioned folklores are complemented by significant 
data bases, and so their proprietors may find it difficult to part with them in favor 
of some other scheme, however reasonable, that has no data base. 

Nevertheless, for all the good reasons to develop sensible ideas on viscous 
simulation, the Fluid Dynamics Panel of AGARD has set up a Working Group on Viscous 
Simulation that will make an approximately two year study of the topic beginning in 
May 1984. Pending the results of these studies, what follows are the author's own 
views on viscous simulation. 



8-6 

I 
Developing a Simulation System 

There is in all liklihood some flexibility in developing a simulation system. 
But overall, this would consist of the following elements: 

1. Choosing a Simulation Methodology 

A simulation methodology is the underlying rationale for relating wind 
tunnel results to flight conditions. Such methodologies are not unique, 
and are in someways dependent on the phenomenon being simulated. It 
could be different for unsteady phenomena such as buffeting than for 
steady phenomena. 

2. Applying the Needed Boundary-Layer Controls/Trips 

Implementation of the simulation methodology often requires fixing of 
the transition point at a location upstream of where it would occur 
without a trip. Aside from physical trips, sjich tripping can be 
accomplished by exploiting tM tux^jilenca and acQustjc ieyfils in a 
facility QS. £Ysn to augmenting them. 

3. Scaling of Wind-Tunnel Results is Full Scale Vehicle in Flight 

This is accomplished within the dictates of the simulation methodology. 
Use should be made of computational fluid dynamics (CFD) capabilities to 
facilitate scaling. 

It is of course to be recognized that the methodologies, trips and scaling 
procedures would have to be developed separately for each flight regime - subsonic, 
transonic, supersonic and hypersonic. 

Example Simulation Methodologies 

The following is a suggested simulation methodology. The testing in the 
wind tunnel should be done at the flight Mach number whose correct value is 
established with the aid of the far field simulations and/or corrections alluded to 
earlier. The near field simulation can be effected by requiring exact scaling of the 
geometrical shape of the component being studied together with the correct geometric 
reproduction (as a fraction of chord or body length) of transition and separation 
locations as would be encountered at flight Reynolds numbers. This would give a 
correct picture of the viscous-inviscid interactions, and therefore nearly correct 
pressure distributions. The only scaling then required is of the surface shear. The 
measured wall shear effects would have to be scaled to flight Reynolds numbers either 
from established data bases or else using CFD. 

The "correct" location of the transition point implies knowledge of the 
transition Reynolds number in flight. The latter of course is not known and must be 
estimated in some standard manner. One can argue that just as we design for a 
standard atmosphere, why not also assume a "standard environment." For low Mach 
numbers possibly into the transonic range this could be an "e^ environment," as 
substantiated in high flow quality wind tunnel tests and in some flight tests, e 
transition locations are readily calculated by a variety of available programs. This 
standard environment or standard transition criterion can of course be changed in 
favor of a better one when such an improved criterion is Identified. Standard 
criteria would also have to be developed for the supersonic and hypersonic regimes. 

An alternative methodology relies more heavily on CFD. Using experiment to 
refine a CFD procedure, including the turbulence modeling, that procedure together 
with a transition prediction procedure can be used to calculate the flowfield at 
flight conditions. 

In the first methodology, as much as possible of the simulation is done 
experimentally and only Reynolds number scaling is used. In the second methodology, 
the experiment is used to develop a reliable computational method, and then the 
computation is used to determine flight pressure distributions as well as shears. For 
the present state of development of CFD, the first methodology is more tractable. 

Tripping Techniques 

This lecture is too short for a review of tripping practices. However, the 
properties of a desirable trip can be easily stated. A tripping device should cause 
transition close to the device and in a predictable manner. The drag of the device 
should be minimal. Finally, the turbulent boundary layer resulting from tripping 



should be a member of the extrapolable family of turbulent boundary layers. 

Many wind tunnel groups employ tripping techniques in accordance with the 
suggestions of Braslow and co-workers at NACA/NASA (Braslow and Knox 1958, Braslow, 
Hicks and Harris 1966). It is however very possible as mentioned earlier to exploit 
a poor tunnel environment as a tripping device. Just those features that cause a 
particular tunnel to be a poor facility for transition research may make it very 
suitable for viscous simulation. Such environmental trips can be rather desirable 
because they have no inherent drag and the resulting turbulent boundary layers tend 
to be of the extrapolable family. It is suggested that studies be made of techniques 
to control the location of transition due to an environmental trip, either by 
augmenting the turbulence or acoustic disturbance levels in the tunnel or else by 
adding a mechanical trip. 

A Subsonic Example 

Consider the case of an airfoil at a low subsonic Mach number whose chord 
Reynolds number in flight is 35 x 10^. This is to be studied by wind tunnel tests at 
the same Mach number as in flight on a geometrically similar shape in a wind tunnel 
model whose chord Reynolds number is 5 x 10°. Since the e^ transition Reynolds number 
at low flight speeds is about 3.5 x 10°, this indicates transition on the airfoil in 
flight at 0.1 chord. Transition on the wind tunnel model should also be effected at 
0.1 chord or at a transition Reynolds number of 500,000. This can be done either by 
tripping or else by running the tests in a wind tunnel whose turbulence level is 
about 1.3% (Mack 1977). The measured friction drag coefficient can then be 
extrapolated to the flight Reynolds number by standard techniques. 

Problems at Transonic, Supersonic and Hypersonic Speeds 

The preferred simulation methodology referred to above requires the ability to 
predict transition locations for a standard environment as well as shock wave and 
separation locations. This is not presently possible in all flight regimes. In the 
transonic regime, transition might be estimated by an e^ criterion but shock 
locations are very sensitive to far field tunnel conditions. In the supersonic and 
hypersonic regimes, while shock locations and shock-induced separations are fairly 
predictable, there is little guidance with respect to the transition Reynolds number 
in atmospheric flight. 

Concluding Remark 

It is clear that there is much work to be done on the important topic of viscous 
simulation. Success in this area will depend in a significant way on the extent to 
which the understanding of the elements of the laminar-turbulent transition process 
can be exploited. It is of particular interest to see if present tripping technology 
can be augmented by successful use of "non-intrusive" environmental trips. 
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